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Abstract
for long time, calcineurin-inhibitors (CNIs) was the best
broadly used immunosuppressant in organ transplantation;
since it had proven its efficacy in the reduction of acute
rejection episodes and early graft loss, though their use in
the long-term, are associated with chronic allograft
nephropathy (CAN), besides it increases the cardiovascular
risks such as diabetes, hypertension, and dyslipidemias.
Moreover, CNIs in combination with other
immunosuppressant's increases the risk of fatal infections
and malignancy. Ultimately the introduction of the
mammalian focus of rapamycin (mTOR) inhibitors, such as
sirolimus and everolimus in 1990s, had changed the face of
transplantation and conveyed a great hope to transplant
physicians as an innovative class of effective
immunosuppressants with a unique mechanism and less
nephrotoxic effects (1-6).

In this review article we will try briefly to elicit the clinical
indications, advantage and disadvantage of m-TOR
inhibitors over other immunosuppressant’s medications and
their clinical indications inside and outside the transplant
field.

Keywords: m-TOR Inhibitors; Sirolimus; Everolimus; CNI;
Chronic Allograft Nephropathy (CAN).

Introduction
Renal transplantation remains the best treatment approach

for most patients with end-stage renal disease. It yields superior
life quality compared with dialysis therapy.

With the great advances in the medical field and the
introduction of new and potent immunosuppressant
medications, the incidence of acute rejection episodes had
declined markedly over the last decade to 5-20% in the first
post-transplant year; yet the graft half-life remained practically
unaffected [1,2]. Reasons behind that were attributed to the

adverse effects of immunosuppressant's, with allograft loss
mainly due to chronic allograft nephropathy (CAN) [1,3].

CAN describe the inevitable steady decrease in renal capacity
with time; characteristically renal biopsy shows tubular atrophy,
interstitial fibrosis, glomerulosclerosis and vascular occlusive
changes [1,3].

Other causes of renal allograft loss beside CAN, are death
from cardiovascular diseases, infections or malignancy in
patients with a functioning graft, which explains the remaining
50% of graft losses.

Unpredictably, with utilization of strong immunosuppressant's
medications; the occurrence of de novo malignancies had
expanded rapidly, which was attributed to the direct oncogenic
impacts of these medications.

The introduction of m-TORI; sirolimus and everolimus in the
field of transplantation had brought a great hope to transplant
physicians as they have distinctive method of activity and
different adverse effects profile (i.e. lower nephrotoxicity, less
hypertension and perhaps a protective probability against
neoplastic activities) than CNI therapy [1-6].

Mode of Action of m-TOR Inhibitors
Sirolimus (Rapamune®/rapamycin) is a lipophilic microcyclic

lactone antibiotic, segregated from a strain of fungus called
Streptomyces hygroscopicus, found at Rapa Nui in 1969 [7,8].
Though it was created as an antifungal drug against candida
albicans, aspergillus fumigatus and cryptococcus neoformans, it
was found later to have an immunosuppressive and anti-
proliferative activities that led to its launch as a major
immunosuppressant against transplant rejection [1,5-9].

Sirolimus is the prototype of the first generation of mTOR
inhibitors and resemble in its structure tacrolimus structure, as it
fixes to the immunophilin FK binding protein-12 (FKBP-12), to
form an immunophilin complex (catalyst). The objective of this
SRL-FKBP-12 complex is the serine-threonine kinase of the
phosphatidyl-inositol-3-kinase pathway, which is called mTOR
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and acts through the co-stimulatory and cytokine-driven
pathways, to prevent the signal III pathway (G1 to S transition,
interpretation, and cytokine-driven T-cell multiplication)
[1,4-10]. The serine/threonine kinase mTOR is a downstream
effector of the PI3K/AKT pathway, and forms two distinct
multiprotein complexes, mTORC1 and mTORC2 (figure 1). These
two complexes have a separate network of protein partners,
feedback loops, substrates, and regulators [11].

It appears that growth factors, amino acids, ATP, and oxygen
levels regulate mTOR signalling. Several downstream pathways
that regulate cell-cycle progression, translation, initiation,
transcriptional stress responses, protein stability, and survival of
cells are signalling through mTOR [12].

Figure 1: mTORC1 and mTORC2.

mTORC1 consists of mTOR and two positive regulatory
subunits, raptor and mammalian LST8 (mLST8), and two
negative regulators, proline-rich AKT substrate 40 (PRAS40) and
DEPTOR [13], while mTORC2 consists of mTOR, mLST8, mSin1,
protor, rictor, and DEPTOR [14]. mTORC1 is sensitive to
rapamycin but mTORC2 is considered to be resistant and is
generally insensitive to nutrients and energy signals. mTORC2 is
activated by growth factors, and it phosphorylates PKCα, AKT
and paxillin, and regulates the activity of the small GTPase, Rac,
and Rho related to cell survival, migration and regulation of the
actin cytoskeleton. The activity of this complex is regulated by
rapamycin, insulin, growth factors, phosphatidic acid, certain
amino acids and their derivatives (e.g., l-leucine and β-hydroxy
β-methylbutyric acid), mechanical stimuli, and oxidative stress
[12].

The mTORC1 signalling cascade is activated by
phosphorylated AKT and results in phosphorylation of S6K1, and
4EBP1, which lead to mRNA translation [13].

In contrast to SRL, everolimus (EVR/RAD/Certican) is
considered as a derivative of sirolimus, structurally looks similar
to SLR but with additional extra hydroxyethyl chain substitution
at position-40 on the sirolimus molecule, which make it more
hydrophilic and bioavailable than sirolimus (figure 2)
[1,4,5,7-15].

Figure 1: Sirolimus and Everolimus.

Similarly EVR/FKBP-12 multiplexes acts directly to mTOR,
leading to inhibition of T-cell progression from the G1 to the S
stage of cell cycle, thus results in inhibition of IL-2-induced
protein synthesis and cellular proliferation and inhibition of IL-4-
dependent multiplications of T-and B-cells [1,4,15,16].
Moreover, B-cell activation, proliferation, differentiation into
antibody-producing cells, and antibody release are also inhibited
[5,6,17]. Indirectly, mTOR inhibitors (sirolimus and RAD) inhibits
effector functions of CD4- helper cells and CD8- cytotoxic cells,
and activate monocytes, macrophages and other pro-
inflammatory leukocytes [5,6,17].

Figure 3: Simplified diagram showing m-TORI mechanism of
action.

Sirolimus has shown an affinity for FKBP12 that is 2 times
greater than tacrolimus and 3.3 times greater than RAD [1,5].

Each of these inhibitors can work synergistically if added to
CNIs, although their pharmacokinetic and pharmacodynamic
characters can differ between the two drugs owed to the minor
differences between their chemical structures.
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Pharmacokinetics and Pharmacodynamics
Sirolimus is rapidly absorbed in the intestines, with median T-

max (time-of-maximal-concentration) of 0.5 to 2 hours. It is
metabolized by both cytochrome P450 IIIA4 (CYP3A4) and P-
glycoprotein, which explains the interactions with other drugs
and high-fat meals and their metabolites are eradicated through
gastrointestinal tract (91%) and kidneys [7,18-21].

The maintenance dose for sirolimus is usually 2 to 5 mg/day,
aiming at trough levels of 5 to15 ng/ml. SRL has a very long half-
life (nearly 62- 65 hours), so trough level monitoring should be
done 5 to 7 days after initiating the medication, which makes
once daily dosing probable. In contrast to cyclosporine A,
sirolimus trough concentrations are stable over time and
strongly correlate with 24-hour exposure (area under the curve
[AUC]. There is no significant effect on C-max (maximal
concentration) or AUC by sex, age, or ethnic origin [19,20,22].

However, cyclosporine A increases sirolimus bioavailability by
240% when administered simultaneously and by only 80% when
administered 4 hours apart. On the other hand, tacrolimus does
not have the similar pharmacokinetic interactions with sirolimus
as cyclosporine, though (as cyclosporine) it may enhance the
adverse effect of sirolimus (including hemolytic uremic
syndrome/thrombotic thrombocytopenic purpura/thrombotic
microangiopathy (HUS/TTP/TMA) if given concurrently. In a
crossover study, simultaneous and separate (by four hours)
administration of sirolimus and tacrolimus were compared, and
no significant interactions were found in pharmacokinetic
parameters, including AUC and C-max, hence combination of
sirolimus and tacrolimus can be taken concurrently while
administration of cyclosporine should be separated four hours
apart from sirolimus [21,23,24]. Moreover, cyclosporine should
be administered at lower doses with lower target serum
cyclosporine concentrations when given with sirolimus [24].

Similarly, co-administration of diltiazem, verapamil,
fluconazole, ketoconazole, anticonvulsants and rifampicin can
altered the AUC of sirolimus [5,7,23].

Sirolimus should be taken consistently either with or without
food. Grapefruit juice should be avoided since it can
unpredictably alter sirolimus pharmacokinetics. Oral tablets of
sirolimus are not bioequivalent to the oral solution [23].

Contrary, EVR shows a slightly greater AUC, with half-life of
30hours compared to sirolimus, hence twice-daily dosing is
necessary. Equally to sirolimus; it is metabolized by liver and
intestinal cytochrome P-450 enzyme CYP-3A, therefore it is
affected by drugs and dietary changes.

Pharmacokinetics of EVR are less affected by cyclosporine
than sirolimus, therefore it's possible to be administered with
cyclosporine or tacrolimus simultaneously [5]. Beyond that, the
efficacy of both drugs appears to be similar, as well as their
toxicity profiles [7,25-28].

Liver disease significantly increases sirolimus/everolimus
bioavailability, reducing its clearance and prolonging its
elimination half-life [23].

m-TOR I in Renal Transplantation
There are numerous clinical trials of m-TOR-I since the time it

was approved for practice in the renal transplant field; various
regimens had appeared aimed at minimizing CNI or eliminating
them. Accordingly three CNI-sparing strategies: CNI withdrawal,
CNI minimization, and CNI avoidance have been studied [29];
here we summarize the most famous clinical trials used with
mTOR inhibitors:

Table 1: Trials of CNI elimination using sirolimus in kidney
transplantation.

Trial Name & method Time of
conversi
on

Results

SMART: is an
observational study,
included 132patients
followed for 36 month, the
aim was to compare early
conversion to SRL while
watching such effect on
eGFR

Early
conversio
n of CNI
to SRL at
10-24
days

• After 36 month, renal
function was better in SRL-
group (ITT-eGFR at
36month: 60.88 vs 53.72
[CsA] ml/min/1.73 m2,
P=0.031), however, many
patients had to stop the
treatment in the SRL group
59.4% vs 42.3% (CsA).

• Survival at 36 months was
excellent for both groups
(99% [SRL] vs 97% [CsA]
and graft; 96% [SRL] vs 94%
[CsA]).

Rapamune Maintenance
Regimen [30] is a
prospective, open-labeled,
randomized, multicenter
trial, included 525patients
with aim to compare early
conversion to SRL while
watching the effect on
cGFR over 24 months

Early
conversio
n of CsA
to SRL at
3 months

• At 24 months, the differences
in patient survival (94.0% vs
95.3%), graft survival (91.2%
vs 93.5%), BPAR after
randomization (5.1% vs
9.8%) or discontinuations
(34% vs 33%) for SRL-CsA-
ST vs SRL-ST, respectively,
all were not statistically
significant

• SRL therapy resulted in
significant long term
improvement in graft survival
and BP without increased
risk of graft loss or late acute
rejection, Calculated GFR
(43.8 vs 58.3 mL/min, P<.
001).

Spare-the Nephron [31] is
a prospective, open-label,
randomized, multicenter
trial, includes 305patients,
examined early withdrawal
from CNI-based therapy
post transplantation while
maintaining patients on
MMF together with SRL.
Patients were followed for
a median time of 519 days.

Early
withdrawa
l of CNI at
4-12
weeks

• Patients who were
maintained on MMF/CNI for
≤6month and then converted
to maintenance
immunosuppression with
MMF/SRL had greater
improvement in mGFR vs
patients who remained on
MMF/CNI.

• The incidence of BPAR was
significantly greater with
MMF/SRL (12.2%) vs
MMF/CNI (4.1%, P=0.02).
Graft loss occurred in 3.4%
of the MMF/SRL-treated
patients and in 8.3% of the
MMF/CNI-treated patients
(P=0.04). Malignancies were
seen less frequent with
MMF/SRL.

• Withdrawal for adverse
events was 34.2% of the
MMF/SRL-treated patients
and for 24.1% for MMF/CNI-
treated patients (P=0.06).
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CONCEPT [32] is a
prospective, open-labeled
multicenter trial, included
237patients, evaluated for
early conversion from a
CsA-regimen to a SRL-
regimen, measuring eCrCl
(Cockcroft and Gault) at
52weeks

Early
conversio
n at 3
months
from CNI
to SRL

• CrCl at 52weeks was
superior in SRL group (68.9
vs 64.4 mL/min, P=0.017),
though patients and grafts
survival were statistically
insignificant.

• The frequency of acute
rejection, had occurred
mostly following steroids
withdrawal, however,
although it was numerically
higher but statistically
insignificant in the SRL group
(17% vs 8%, P=0.071).

CONVERT [33]
830patients were randomly
assigned to continue CNI
(n:275) or to be converted
from CNI to SRL (n:555),
Endpoint were GFR
(Nankivell), rates of BPAR,
allograft loss, or death at
12-24 months.

Late
conversio
n from
CNI to
SRL (6-12
months.

• ITT analysis of the primary
endpoint failed to
demonstrate any significant
benefit of SRL conversion
group over CNI-group,
however, among SRL
converted-group; patients
with GFR >40 ml/min/1.73
m2 at baseline were
accompanied with superior
patient and graft survival,
while there was no difference
in acute rejection episodes
and had lower incidence of
neoplasia compared with
CNI group, as demonstrated
by retrospective analysis of
binary outcome for the
overall stratum.

• Superior renal function was
observed in SRL-group that
persisted through 12-24
months, particularly those
with baseline GFR >40
ml/min/1.73 m2 and UPr/Cr
≤0.11.

• An unexpected finding of
new onset proteinuria had
appeared with an increase in
the preexisting proteinuria
following conversion to SRL.

Table 2: Trials of CNI elimination using everolimus in kidney
transplantation. Till date there is no head to head trial
comparing everolimus to sirolimus in renal transplant recipients,
and therefore there is no evidence for superiority of either drug
on the other.

Trial Name & method Time of
conversio
n

Results

ZEUS [34] is an open-
label, multicenter RCT,
includes 300patients,
followed up for 12
months.

Early
conversion
of CsA to
EVL at 4.5
months

• Everolimus therapy was
accompanied with an
improvement in GFR
compared to cyclosporin
(71·8 ml/min per 1·73 m2 vs
61·9 ml/min per 1·73 m2,
respectively.

• BPAR Rates were greater in
the everolimus group than
cyclosporin after
randomisation (15 [10%] of
154 vs five [3%] of 146;
p=0·036),

• Early replacement of CNI
with everolimus-based
therapy had improved renal
function at 12 months and
preserved efficacy and
safety.

ASCERTAIN [35] is an
open-label, multicenter
RCT aimed at CNI
elimination or
minimization while
introducing EVL, patients
included (N=394 ITT; 127
CNI elimination vs 144
CNI minimization), all
followed for 24 months.

Late
conversion
(>6
months,
mean
follow-up
5.6 years)

• No overall renal benefit of
EVL was shown, adverse
events and discontinuations
were more frequently noted
in the EVL group, however,
Post hoc analyses showed
that patients with CrCl >50
mL/min at baseline had
considerably greater
increase in mGFR after CNI
eradication vs controls
(variance of 11.4 ml/min/1.73
m2 vs 20.8 ml/min/1.73m2,
P=017).

CENTRAL [36] is an
open-label, multicenter
RCT, included
202pateints, followed-up
for 36 months.

Early
conversion
of CsA to
EVL at
7weeks

• Conversion from CsA to EVL
at 7th weeks was
accompanied with significant
enhancement in mGFR at 36
months vs CsA-treated
patients, although drug
withdrawals and BPAR
episodes were more
common

• There was no overall
advantage in an intent-to-
treat population.

Recommendations for Conversion to m-
Tor Inhibitors in Renal Transplantation

There is no special protocol for conversion to m-TOR I in renal
transplant, however, proteinuria, frequency of rejection
episodes that precedes conversion, higher chronic Banff score
and high score of vascular intimal thickening were connected
with non-responder in a univariate investigation [19]. Diekmann
had proposed conversion for CAN at creatinine less than
2.5mg /dl and proteinuria beneath 800 mg/day [22].

Current literature had suggested the likely beneficial
evidences for conversion to SRL-based regimen if there are:
[1,4,29]

• CNI- related symptoms, for example, nephrotoxicity, arterial
hypertension and diabetes mellitus.

• Early chronic transplant dysfunction, however, GFR should be
more than 40 mL/min with normal urinary protein excretion.

• Possibility of tumor recurrence/occurrence with the
administration of CNI.

On the other hands; the possible contraindications for
conversion to SRL-based regimen are:

• Hyperlipidemia with serum cholesterol >300 mg/dl and/or
serum triglycerides >400 mg/dl, despite using lipid-lowering
agents.

• Advanced renal failure with elevated serum creatinine that
exceeds 4 mg/dl.

• Glomerular damage with proteinuria >1 g/day at baseline.

The optimum time for early conversion is about 3 months
post-transplant.

Notably; The administration of SRL in high-risk group, like
those with diabetes mellitus, body mass index >30 kg/m2, major
re-operations or delayed graft function, should not occur until
four to six weeks post transplantation, after the wound had
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healed and serum creatinine level stabilized at 2.5 mg/dl or
below.

The dosage of MMF/AZA must be decreased by 50% at the
beginning of SRL therapy while steroid treatment might be
continued [1].

The CNI dosage must simultaneously decreased by 50% and it
can be ceased totally when the SRL trough level reach 5–10
ng/mL. Further trough level measurements are suggested
weekly after each extra dose adjustment [1].

Additional trough level estimations are suggested for patients
with liver impairment or when using particular substances that
might hinder CYP3A4 and/or P-gp metabolism.

Two SRL conversions protocols can be used;

• Abrupt stop of CNI therapy with a single loading dose of
sirolimus of 10mg followed by 5 mg/day in African-
Americans or a loading dose of 8 mg followed by 4 mg/day in
Caucasians [37].

• To introduce sirolimus at a dose of 3-4 mg/day with a
synchronous decrease of CNI dosage to 50%. Once target
level had achieved (8-12ng/ml), then CNI can be withdrawn
totally, commonly in 7-10 days [38,39].

Note: Mycophenolate dose should be ≤ 1.5 g/day [40].

Figure 4: Dosage and reference ranges for adult kidney
transplant patient.

The initial oral sirolimus maintenance dose is 2 to 5 mg daily.
Subsequent doses are based on the attainment of therapeutic
trough concentrations [1,23].

Table 3: Sirolimus Trough Concentration (ng/mL).

≤ 3 months >3 months

(When sirolimus is
used with tacrolimus or
cyclosporine +/- MMF/
mycophenolic acid and
steroids):

8-12 5-10

(When sirolimus is
used as a single agent
+/- steroids)

10-12 8-10

For everolimus, an initial dose regimen of 0.75 mg twice daily
concurrently with ciclosporin is recommended for the general
kidney and heart transplant population, while a dose of 1.0 mg
twice daily in co-administration with tacrolimus is
recommended for the hepatic transplant population.
Subsequent doses are tailored based on blood concentrations
level, initial adjustments can be made at 4-5 day intervals after
initiating therapy. Recommended everolimus range to be 3 to 8
ng/mL for renal and liver transplant patients [8,23,26].

Table 4: suggested target CNI trough concentration windows
with m-TOR I therapy in renal transplant recipients. C0 levels
monitoring is reliable measure with mTORI therapy [41].

Period Month 1 Months 2-3 Months 4-5 Months 6-12

Target
cyclosporin
Co (ng/ml)

100-200 75-150 50-100 25-50

Target
tacrolimus
(ng/ml)

3-7 3-7 3-7 3-7

Clinical Advantages of mTOR-inhibitors
Therapy over Other Immunosuppressants

Antitumoral activity
Immunosuppressants in conjunction with other oncogenic

stimuli, such as viruses and radiation can be a major risk for
development of certain cancers like Kaposi sarcoma, lymphoma
and skin cancers, which is considered the leading reasons for
morbidity and death after solid organ transplantation. There is,
however, persuading evidence that avoiding CNIs and uses of
mTOR-inhibitors can convey advantages with respect to the
progression of malignancy [2,19,25,42,43], this was proven on
several studies, e.g. patients in CONVERT study who were
converted to sirolimus; had a diminishment in the rate of
malignancies compared to the individuals who stayed on CNI at
12 and 24 months (3% vs 10%) [1,4,32,33], similarly Campistol
JM et al, had reported successful recession of Kaposi’s sarcoma
and PTLD with no alteration in renal function after substitution
of CNI with mTORIs [44].

mTOR-I has cytostatic effect without cytotoxic activities, so
the clinical outcome is stabilization of the tumor cells rather
than progression.

The mechanism by which m-TOR-I can incite this anti-tumor
activity is related to up-regulation of adhesion molecules and to
a change to less aggressive phenotype of tumoral cells, as
appeared with Luan et-al. who found that SRL could modify
tumor cells from aggressive phenotypes like spindle- or dome-
shaped cells to a less aggressive cuboidal form in renal cell
carcinoma [45].
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Moreover, m-TORI can block growth-factor-stimulating cell
proliferation of haematopoietic and non-haematopoietic cells
(CNS, hepatocytes, renal, melanocytic, osteoblastic, myogenic,
fibroblasts and endothelial cells) by creating a complex with the
intracellular immunophilin FKBP-12. Furthermore it inhibits
proliferation of T and B cells altered by HTLV-1 and EBV [1,15].

In the pre-clinical models; m-TORI had exhibited growth
inhibition of tumoral cells by increasing expression of E-cadherin
and p27-kip1, also it decrease cyclin-d1 expression, causing
arrest in cellular progression from G1 to S-phase [1,4,6,7,15].
Recent reports demonstrated that sirolimus inhibits UV-B
activation of several metalloproteinases that can enhance tumor
development and premature skin aging [34].

Lower rate of viral disease after transplantation
It was observed that the rate of viral infections (particularly

cytomegalovirus and BK virus infections) are much lower in
patients taking mTOR-inhibitor-based regimens than other
immunosuppressant, which is true for both sirolimus and
everolimus and in all recipients of kidney and heart grafts
weather anti-viral prophylaxis were given or not [2].

Everolimus showed a profound inhibitory effect on human
Epstein-Barr virus and lymphoblastoid B-cell lines in vitro [5].

Effect of mTOR inhibitors on cardiovascular disease
Cardiovascular disease is known to have a great influences on

morbidity and mortality for kidney transplant recipients, risk
factors (such as hypertension, left ventricular hyperplasia,
hyperlipidemia and Post-transplant diabetes mellitus (PTDM))
has been linked greatly with CNI use [2,4], and by replacing/
minimizing them with mTOR-I we can reduce such risk factors.

Additionally, conversion from CNI-therapy to mTORi-based
regimen had improved blood pressure significantly as shown in
the RMR study and may achieve regression of left ventricular
hyperplasia [39].

Although hyperlipidemia is considered to be a major concern
in patients converted to mTOR-inhibitors, with highly elevated
cholesterol and triglycerides levels, with subsequent increased
use of lipid-lowering agents [2]; yet the long-term follow-up in
most studies does not suggest an increased association between
mTOR-I’s and cardiac events. Indeed, pre-clinical studies had
suggested a beneficial effect of mTORIs on atherosclerosis with
favorable effects were found in human cardiac transplantation,
in which SRL has been shown to reduce the progression of
allograft vasculopathy [4].

Experimental studies have shown that SRL could be effective
in reducing aortic atherosclerosis in apo-E-deficient mice
independent of lipid levels [2,4].

Clinical Indications of m-TOR I in Non-
Transplant Patients

Anticancer therapies
Tumors may occur due to dysregulation of mTOR signals and

can confer higher susceptibility to mTOR inhibitions.

Deregulations of multiple elements of the mTOR pathway, like
PI3K amplification/mutation, PTEN loss of function/mutation,
AKT mutations/amplifications, and S6K1, 4EBP1, and eIF4E
overexpression have been related to many types of cancers.
Both eIF4E and S6K1 are included in cellular transformation and
their overexpression has been linked to poor cancer prognosis
[46,47]. Therefore, mTOR is an interesting therapeutic target for
treating multiple cancers alone or in combination with inhibitors
of other pathways.

Currently m-TOR-I (rapamycin and several rapalogs, including
temsirolimus, everolimus, and ridaforolimus which are the first
generation mTOR inhibitors) are being widely investigated
outside the transplant field for their anti-proliferative properties
on certain kinds of tumors, including glioma, non-small cell lung
cancer, breast cancer, rhabdomyosarcoma, B- and T-cell
lymphoma, multiple myeloma, colonic carcinoma, pancreatic
cancer, hepatocellular carcinoma, ovarian cancer, endometrial
carcinoma, renal cell cancer, prostatic cancer, bladder cell
carcinoma and melanoma, however, their use remained limited
within experimental field [1,48]. Probably this is related to the
fact that rapalogs are primarily cytostatic, and therefore
effective as disease stabilizers rather than for regression, hence
the response rate in solid tumors where rapalogs have been
used as a single-agent therapy have been modest [49-52].
Another reason for the limited success is the presence of
feedback loop between mTORC1 and AKT in certain tumor cells.
It seems that mTORC1 inhibition by rapalogs fails to suppress a
negative feedback loop that results in phosphorylation and
activation of AKT [48,53-55]. These limitations have led to the
development of the second generation of mTOR inhibitors
known as ATP-competitive mTOR kinase inhibitors [55].

Coronary stent coating
The antiproliferative effect of m-TOR I has also been used in

conjunction with coronary stents to prevent restenosis in
coronary arteries following balloon angioplasty. The sirolimus or
everolimus is formulated in a polymer coating that affords
controlled release through the healing period following coronary
intervention.

Several large clinical studies have demonstrated lower
restenosis rates in patients treated with sirolimus-eluting stents
when compared to bare-metal stents, resulting in fewer
repeated procedures [56].

Moreover, sirolimus-eluting stents (SES) were found to have
superior results compared to everolimus-eluting stents (EES),
which were associated with greater angiographic in-segment
late loss and higher rates of in-segment restenosis compared
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with SES implantation, though clinical outcomes were both
excellent and not statistically significant [57].

Lymphangioleiomyomatosis
(LAM) is a rare, progressive and systemic disease,

predominantly affects women of childbearing age and typically
resulting from proliferation in the lung, kidney, and axial
lymphatics of abnormal smooth muscle–like cells (LAM cells)
that exhibit features of neoplasia and neural crest origin. Cystic
destruction of the lung with progressive pulmonary dysfunction
and presence of abdominal tumors (eg, angiomyolipomas [AML],
lymphangioleiomyomas) characterizes the disease. It usually
occurs as a feature of an inherited tuberous sclerosis complex
(TSC-LAM), with mutations of the tuberous sclerosis complex
gene (TSC2), though sporadic forms of the disease (S-LAM) are
present. Loss of TSC2 gene function activates the mTOR signaling
pathway, resulting in the release of lymphangiogenic growth
factors and this can be blocked with m-TOR I.

Sirolimus was approved by the Food and Drug Administration
for their use in LAM in May 2015, based on the results of
Multicenter International LAM Efficacy and Safety of Sirolimus
(MILES) Trial. The MILES data supports the use of sirolimus in
patients who have abnormal and rapidly declining lung function
(i.e. FEV1<70% predicted). Sirolimus also appears to be effective
for the treatment of chylous effusions. The benefits of sirolimus
only persist while treatment continues, so the safety of long
term therapy must be addressed in further studies [58-60].

Sirolimus is the only and first drug therapy approved by the
FDA in the management of lymphangioleiomyomatosis (LAM).

Neurological Indications

Tuberous sclerosis complex and epilepsy
Sirolimus/Everolimus shows a promising role in treating

tuberous sclerosis complex (TSC), elicited on several studies that
conclusively linked mTOR inhibitors to remission in TSC tumors,
specifically subependymal giant-cell astrocytomas in children
and renal angiomyolipomas in adults, and pulmonary
lymphangioleiomyomatosis [61-64]. Further trials are ongoing,
till then their uses will remain off-label [46], moreover, tumors
were often re-grow when the treatment stopped.

Topical sirolimus therapy (applied in different formulations
such as ointment, gel, solutions, and creams, ranging from 0.003
to 1% concentrations) was used for treatment of facial
angiofibromas with positive outcomes results reported in
sixteen separate studies involved a total of 84 patients and
improvement was observed in 94% of subjects, especially if
treatment began during the early stages of the disease [47,65].

In addition to the known role of the mTOR in tumorigenesis
and the associated utility of mTOR inhibitors for treating tumors
in TSC, the importance of mTOR in the common, disabling
neurological symptoms of TSC, in particular epilepsy, autism, and
cognitive deficits, is not well established and appear to be
unrelated to tumor growth per se, but probably linked to other
cellular and molecular abnormalities, such as aberrant circuit

formation and dysregulated neurotransmitter receptors or ion
channels. However, whether mTOR inhibitors represent a
rational treatment for seizures and neuropsychiatric symptoms
in TSC patients, this has not been prompted yet in the clinical
practice [63]. Furthermore, there is increasing interest as to
whether the mTOR pathway may be involved in other types of
epilepsy (other than genetic epilepsies), such as epilepsy
following acquired brain injury. There is some evidence that
mTOR inhibitors can inhibit existing seizures or can prevent
epilepsy in some animal models of acquired epilepsy, though
other studies have found negative results [65-69].

Non–TSCrelated brain tumors
In addition to SEGAs in TSC, the mTOR pathway has been

implicated in the pathophysiology of other brain tumors
unrelated to TSC, particularly other types of gliomas [65]. The
mechanism of the antitumor effects of rapamycin against
gliomas is still being investigated, but may include direct
cytotoxic and antiproliferative effects, inhibition of vascular
endothelial growth factor and angiogenesis, decreased invasive
propensity, and increased sensitivity to radiation [70].

Neurodegenerative diseases
M-TOR pathway has been implicated in a number of

neurological conditions including structural brain disorders,
inherited neurocognitive disorders such as fragile X syndrome,
autism spectrum disorder, and classical progressive
neurodegenerative diseases such as Alzheimer disease,
Parkinson’s and Huntington disease which characterized by
accumulation of abnormal toxic proteins and associated
neuronal death.

Since mTOR pathway is involved in regulation of cell death
and survival mechanisms, it makes sense that mTOR has also
been implicated in the pathophysiology of these
neurodegenerative disorders. In particular, mTOR signaling may
modulate the mechanisms of apoptotic cell death. Furthermore,
mTOR pathway normally inhibits autophagic mechanisms, which
help degrade and clear aggregated or accumulated proteins.
Thus, mTOR inhibitors may represent a rational therapy and
protective gents for this group of diseases by inducing
autophagy or by directly regulating neuronal death mechanisms.
However their use is limited currently to animal’s models.
Moreover, significant side effects that may occur with mTOR
inhibitors, including chronic immunosuppression and associated
opportunistic infections, make this prospect of longterm
treatment less attractive [65].

Muscular dystrophy in mice
Duchenne muscular dystrophy progresses rapidly in males to

severe impairment of muscle function and death in the second
or third decade of life. Bibee et al had demonstrate an
alternative approaches that rescue defective autophagy
in mdx mice, a model of Duchenne muscular dystrophy, with the
use of rapamycin-loaded nanoparticles induce a reproducible
increase in both skeletal muscle strength and cardiac contractile
performance that is not achievable with conventional oral
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rapamycin, even in pharmacological doses. This increase in
physical performance occurs in both young and adult mice, and,
surprisingly, even in aged wild-type mice. Although the exact
mechanism responsible for rapamycin's entry into muscle tissue
remains to be clarified, the effect on autophagy is clear and
seems dependent on NP-linked depot delivery, because oral
therapy is ineffective at the doses that were administered
[71,72].

Progeria (Hutchinson–Gilford Progeria
Syndrome (HGPS))

Progeria or aging disease is an extremely rare genetic disorder
in which symptoms resembling aspects of aging and manifested
at a very early age leading to an extremely compromised cell-
damage repair capacity and typically resulting in death in the
early teenage years due to causes which are generally associated
with old age such as heart disease or stroke.

A recent discovery that rapamycin suppresses a pro-senescent
phenotype in progeric cells in addition to clearance of progerin.
Rapamycin in theory would suppress geroconversion
downstream of progerin. Furthermore, rapamycin prevents
atherosclerosis in animal models of accelerated atherosclerosis
and accelerated atherosclerosis is one of the main symptoms of
progeria leading to death [73].

Others genetic diseases
Tuberous sclerosis, Peutz-Jeghers syndrome, Cowden

syndrome, Bannayan-Riley-Ruvalcaba syndrome, Lhermitte-
Duclos disease, Proteus syndrome, von Hippel-Lindau disease,
Neurofibromatosis type1 are all caused by mutations in the
mTOR pathway component
genes TSC1, TSC2, LKB1, PTEN, VHL, and NF1 respectively, hence
addition of m-TOR I can play a promising role in such diseases
[74].  

Systemic lupus erythematosus in murine
lupus models and human

Sirolimus decreases the disease activity and prednisone
requirement in systemic lupus erythematosus (SLE) patients who
are intolerant or resistant to immunosuppressant medications.

Sirolimus acts through blocking the activation of its molecular
target, the mechanistic target of rapamycin complex 1
(mTORC1). The mTOR pathway is involved in many aspects of T
cell differentiation and function. The activation of mTORC1is
associated with suppression of mTORC2, results in the expansion
of pro-inflammatory CD4-CD8- double-negative (DN) T
lymphocytes. These DN-T cells produce inflammatory cytokines,
interleukin-4 (IL-4) and interleukin-17, and they exhibit
predisposition to pro-inflammatory cell death through necrosis.
Moreover, Increased IL-4 production is responsible for activation
of autoantibody-producing B lymphocytes in SLE. Rapamycin
treatment in vivo blocked the IL-4 production and necrosis of DN
T cells, increases the expression of FOXP3 in CD25(+)/CD4(+) T
cells, and expanded CD25(+)/CD19(+) B cells. These results

identify mTOR activation to be a trigger of IL-4 production and
necrotic death of DN T cells in patients with SLE.

It is possible that rapamycin treatment resulted in recovery of
IL-2 production along with normalization of calcium signaling,
creating a cytokine milieu more favorable to regulatory T cell
function. Rapamycin also has been demonstrated to promote an
anti-inflammatory environment by affecting the behavior of
dendritic cells. M-TOR inhibition leads to complementary
changes in myeloid dendritic cells and T cells leading to the
production of regulatory T cells. This regulatory T cells together
with CD4+CD25-cells increased STAT3 and STAT5
phosphorylation and enhance the differentiation of CD8+ T cells
into memory cells in mice inoculated with lymphocytic
choriomeningitis virus. Prospective clinical trial in SLE patients
with sirolimus is ongoing [74-76].

Scleroderma
m-TOR can plays a role in fibrotic diseases and autoimmunity,

and blockade of the mTORC pathway through blocking the pro-
fibrotic effects of TGF-β can play a part in the treatment of
scleroderma (or systemic sclerosis), however, this approach is
currently under investigation [77].

Glycogen storage disease (GSD)
In a trial done in a canine model of glycogen storage disease

(GSD) IIIa, had suggested that rapamycin can inhibit mTORC1, so
that the phosphorylation of GS (glycogen synthase) can be
increased in skeletal muscle and glycogen content in primary
muscle cells can be reduced significantly in patients with GSD
IIIa through suppressing the expression of glycogen synthase
and glucose transporter 1, therefore rapamycin had prevented
effectively progression of liver fibrosis in GSD IIIa dogs,
consistent with markedly inhibiting the transition of hepatic
stellate cells into myofibroblasts, the central event in the
process of liver fibrosis. This discovery represents a potential
novel therapeutic approach for glycogen storage diseases (for
GSD III) [78-79].

ADPKD
Sirolimus has been assessed as a therapeutic option for

autosomal-dominant polycystic kidney disease (ADPKD).
Different case reports demonstrated sirolimus as a key role in
reducing kidney volume in patients with early-stage ADPKD and
delaying decline in kidney function compared with those
receiving standard care. However, the current clinical trials are
limited with confounding results [79-81].

Familial cardiac hypertrophy and Wolff-Parkinson-
White syndrome

An essential mediator of cardiac myocyte enlargement is
protein synthesis, which is controlled at the levels of both
translation-initiation and elongation.  Eukaryotic elongation
factor-2 (eEF2) mediates the translocation step of peptide-chain
elongation and is inhibited through phosphorylation by eEF2
kinase. In addition, p70S6 kinase can regulate protein synthesis
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by phosphorylating eEF2 kinase or via phosphorylation of
ribosomal protein S6. Phosphorylation of eEF2 kinase is also
controlled by AMP-activated protein kinase (AMPK), a key
regulator of cellular energy homeostasis. Dependent on AMPK-
priming phosphorylation of tuberin, GSK3β phosphorylates
tuberin and triggers activation of its potential to inhibit mTOR.
AMPK γ2, an important regulatory subunit of AMPK, is encoded
by the gene PRKAG2. Mutations in PRKAG2 are responsible for
familial cardiac hypertrophy and Wolff-Parkinson-White
syndrome. The knowledge that an important hallmark of cardiac
hypertrophy (a major risk for cardiac morbidity and mortality) is
hyperactivation of the PI3K-mTOR cascade, initiated a discussion
whether inhibition of the mTOR pathway could be beneficial in
treating such disorders [79,82,83].

The mTOR pathway in obesity and type 2 diabetes
Recent studies had linked insulin resistance in type 2 diabetes

mellitus and obesity to mTOR Complex1 pathway since it is
controlled through nutrient-hormonal signaling network.

Insulin resistance can be regulated by mTORC1 activation of
p70S6K through the negative feedback loop. p70S6K has been
demonstrated to phosphorylate IRS1 on multiple inhibitory sites
promoting its degradation. Inhibition of IRS protein function will
desensitize cells to insulin. Phosphorylation of IRS1, which is
known to antagonize IRS signaling, is elevated in animal models
of obesity and in muscle from type 2 diabetic patients. Insulin
resistance is the hallmark for both, obesity and type 2 diabetes
[79,84,85].

In HIV
In vitro and in vivo studies suggest sirolimus to possess anti-

HIV properties that may qualify it as a potential new anti-HIV
drug. Sirolimus inhibits HIV replication through different
mechanisms, including down-regulation of the co-receptor CCR5
and induction of autophagy. In addition sirolimus synergistically
enhances the anti-HIV activity of entry inhibitors such as
vicriviroc, aplaviroc and enfuvirtide in vitro.

Additionally, a prospective nonrandomized trial of HIV patient
series receiving RAPA monotherapy after liver transplantation
indicated significantly better control of HIV and hepatitis C virus
(HCV) replication among patients taking RAPA monotherapy
[86].

Anti-Aging properties
Rapamycin was first shown to extend lifespan in eukaryotes in

2006 by Powers et al. who showed a dose-responsive effect of
rapamycin on lifespan extension in yeast cells. Based on this and
other researchers, in 2009, Harrison De et al had demonstrated
a significant increase in the lifespans of genetically
heterogeneous mice fed with rapamycin with increase in median
survival by 14% for females and 9% for males, and he attributed
this to retarding ageing mechanisms or probably to delaying
death from cancer. Life span lengthening was confirmed on
subsequent studies, and is now being tested in the marmoset
monkey and dogs [87-91].

It is hypothesized that dietary regimes such as caloric
restriction and methionine restriction, causes lifespan extension
by decreasing mTOR activity and it is believed that this is
achieved by limiting the essential amino acid leucine and
methionine, which are potent activators of mTOR. The
administration of leucine into the rat brain has been shown to
decrease food intake and body weight via activation of the
mTOR pathway [61,62,87,92].

Moreover, and based on the free radical theory of aging,
reactive oxygen species cause damage of mitochondrial proteins
and decreases ATP production. Subsequently, via ATP sensitive
AMPK, the mTOR pathway is inhibited and ATP consuming
protein synthesis is down-regulated, since mTORC1 initiates a
phosphorylation cascade activating the ribosome. Hence, the
proportion of damaged proteins is enhanced. Additionally,
disruption of mTORC1 directly inhibits mitochondrial respiration.
These positive feedbacks on the aging process are counteracted
by protective mechanisms: decreased mTOR activity (among
other factors) upregulates glycolysis and removal of
dysfunctional cellular components via autophagy [64,93,94].

However, this remains within experimental field and it is not
known whether rapamycin will have similar lifespan-lengthening
effects in humans.

Side Effects of m-TOR Inhibitors
Majority of m-TORI clinical trials have been done in renal

transplant patients using SRL, However, it seems reasonable that
EVR can induce similar adverse effects. Apparently that time,
drug dosage and high drug trough levels might have a primary
role in the development of drug-related adverse effects and
clinical complications.

M-TOR-inhibitors have considerable adverse effects that can
limit its use in some patients. Nearly 30-50% of patients on SRL
therapy have to discontinue the therapy due to these related
adverse effects [1,17].

Reported Side Effects of m-TORI Includes
• Hypertension in 8 -58% of cases [3,15].
• Fever (23% to 34%), chest pain, headache, insomnia, fatigue,

Arthralgia, alterations in taste, and asthenia are common
side effects and can be managed by reducing the drug dose
[1,3,15].

Hyperlipidemia
Hyperlipidemia was reported in 8% to 57%,

M-TORI increases high-density lipoproteins (HDL), low density
lipoproteins (LDL), cholesterol, and triglycerides in
approximately 40 to 75% of patients receiving this therapy, it
affects the up-regulation of adipocyte fatty acid-binding protein
(aP2) expressed in monocytes and macrophages which plays a
key role in the increased accumulation of triglycerides [3,15].

Hyperlipidemia is the principle risk factor for post-transplant
cardiovascular-related morbidity and mortality with a yearly
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hazard appraisal of 50-fold more prominent for renal transplant
recipients than for the general population, that is responsible for
over one-third of all deaths, however, some authors (as
mentioned earlier) claims that the long-term follow-up in
patients getting m-TORI does not propose an expanded risk for
cardiac events. Indeed few had suggested further beneficial
benefits of mTORIs on atherosclerosis.

Joannid`es et al. have demonstrated that SRL-based regimen
reduces aortic stiffness, plasma endothelin-1, and oxidative
stress in renal recipients proposing a defensive impact on the
arterial wall with reduction in the total cardiovascular risk,
However, extra studies are necessary to evaluate long-term
cardiovascular effects of mTOR-I therapy in renal transplant
patients [4,15, 42].

Hyperlipidemia with m-TORI is reversible and dose
dependent, as shown in Morrisett et al. study; where he
observed that cholesterol and triglyceride levels increases 2–4
weeks after initiation of therapy, and reverted to near-baseline
levels within 8 weeks after discontinuation of treatment [3,15].
Hyperlipidemia in m-TORI-based regimen can be treated with
statins therapy alone or in combination with a second line agent.

Gastrointestinal Effects
Reported in approximately 15–20%, and include stomatitis,

abdominal pain, anorexia, nausea, vomiting, diarrhea,
constipation and abnormal LFT [42].

Mucositis and oral ulcerations are the commonest side effects
reported with mTOR-I therapy, occurs probably secondary to the
direct toxic effect of these drugs on oral and nasal mucous
membranes.

Mouth ulcers typically are transient and emerge soon after
administration of SRL. It could be treated with topical steroid,
iodine, or topical analgesic. If symptoms persisted, mTOR-I ought
to be ended and possibly restarted at a lower dosage after
resolution of symptoms.

Gastrointestinal leukocytoclastic vasculitis is a rare
complication reported in a few cases with use of SRL. It is
characterized by diffuse mucosal thickening of the antrum,
duodenum, and jejunum. Drug discontinuation is necessary if
occurs [1,3,15,29].

Increased Infection Risk
Reported in 2-60% in various literatures, occurs early in the

post-conversion period and could be attributed to the high
loading dosages [1,3,4,15]. Severe bacterial infections can occur
in m-TOR-I group, secondary to inhibition of interleukin-12-
induced proliferation of activated T lymphocytes and IFN
creation of the lymphocytes. Both cytokines are known to be
critical in the defensive insusceptibility to intracellular bacteria
(e.g., mycobacterium).

Though bacterial infection is common with m-TORI, studies
had suggested a protective effects against viral infections
particularly CMV infection and possibly BK infection, which

could be related to drug inhibitory effects on viral replication
[15].

Hematological Effects
Bone marrow toxicity often occurs in patients treated with

mTOR-inhibiters, such patients develop anemia, leukopenia, and
thrombocytopenia.

Anemia (13-58%), can occurs as early of schedule as 1-month
in the SRL-post-conversion group, thereafter, hemoglobin levels
typically settled, but at the detriment of incessant utilization of
Erythropoietin in around 50% of patients [3,4]. Similarly EVR
therapy has been associated with anemia as well [15].

Various mechanisms have been anticipated for mTORI
induced anemia, one mechanism proposed the anti-proliferative
effect of the drug on bone marrow progenitor cells and possible
direct impact on iron homeostasis, other mechanism suggested
that mTOR inhibition is responsible for blocking S6 kinase action
(S6 kinase assumes a part in mRNA interpretation in the cell),
and consequently it hinder cell replication in erythroid cell lines
and alter erythroid cell development.

Additionally Thaunat et al. had reported in 2005 a close
relationship between chronic inflammatory status and mTOR-I-
related anemia. Equally, others reported low serum iron levels
and micro-inflammation in patients got converted from CNI to
EVR. An alternative hypothesis of the myelosuppressive
influence of SRL is due to the inhibition of the signal
transduction via the gp-130 [beta] chain shared by a variety of
cytokine receptors, including interleukin-11, granulocyte colony
stimulation factor, and erythropoietin, which stimulate the
production of platelets, leukocytes, and erythrocytes,
respectively [3,15].

Leukopenia was noticed in 5-39% with both SRL and EVR,
necessitating the use of granulocyte colony-stimulating factors
in few patients [3-5,15].

Significant thrombocytopenia was reported in 10%-20% of
renal transplant recipients and thought to be dose dependent.
Thrombocytopenia is reversible within 2 weeks after
discontinuation of the drug; most of those require dose
reduction and few needs temporary drug withdrawal. No patient
requires permanent discontinuation of therapy [5,15].

TTP/TMA/HUS:
m-TOR I may increase the risk of CNI-induced haemolytic

uraemic syndrome/ thrombotic thrombocytopenic purpura/
thrombotic microangiopathy if used in combination with CNI
[26].

Respiratory Symptoms (2-11%)
Several varieties of pulmonary injury have been reported in

the literatures, including lymphocytic interstitial pneumonitis,
lymphocytic alveolitis, bronchiolitis obliterans with organizing
pneumonia, focal pulmonary fibrosis, dyspnea and cough.
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A standout amongst the most serious symptoms is the
development of SRL- induced interstitial pneumonitis. This is
usually dose dependent, with an onset of symptoms between 1
to 51 months after the initiation of SRL/EVR therapy. Diffuse
alveolar hemorrhage has been accounted too.

The pathogenic mechanism of pulmonary toxicity is still
unclear. A cell-mediated autoimmune response was suggested.
Lung biopsy had shown several histological features such as
intra-alveolar non-necrotizing epitheloid granuloma,
lymphocytic interstitial inflammation, and focal pattern of
organizing pneumonia [3,4,15,29].

Post-Transplantation Diabetes (3-33%)
To date, just a small number of clinical studies had claimed

that m-TORI can cause PTDM, the mechanisms are not clearly
understood, though, a few speculations were made: [15,42]

• SRL can induce ectopic triglyceride deposition prompting
insulin resistance.

• Impairment of insulin-mediated suppression of hepatic
glucose generation.

• Direct toxic impact on pancreatic cells.
• AKT activation with impairment of insulin receptor substrate

signaling.
• Another interesting hypothesis is that mTOR is involved in

insulin signaling, and its inhibition may impede insulin
related gene transcription and expression, including glucose
transporters, leading to inhibition of GLUT1mRNA increase,
resulting in failure of insulin to stimulate glucose uptake.

• Similarly, mTOR is an inducer of ribosomal S6 kinase (S6K),
and SRL blocks S6K activation or induces S6K inactivation
through inhibition of T389 phosphorylation interfering with
the transcript of insulin. This action may impact blood sugar
levels.

Wound Complications
in up to 20-50% of patients, which is significantly higher

compared with other immunosuppressive drugs. These include
wound dehiscence, lymphocele development, delayed wound
healing, incisional hernias, and infections.

Lymphocele formation has an incidence that varies according
to different publications, e.g. in (Langer and Kahanshows) study
it had reached up to 38% of patients [3,15].

Wound complications are likely identified with SRL capacity to
debilitate signal transduction of fibroblast and endothelial
growth factors.

Risk factors for wound complications includes older age
recipients, obesity, Caucasian race, diabetics, corticosteroid
utilization, and higher dose of SRL at early post-transplant
period.

Approaches to diminish wound complications consist of
avoidance of loading doses, and modification of surgical
techniques, for example, suction drain position, usage of non-
absorbable sutures while closing, and perhaps delay the

introduction of the drug for several weeks particularly for the
high risk group (patients with a BMI > 30, Caucasian, and elderly)
[1,3,4,15,29].

Lymphedema
Lymphedema is a relatively unusual adverse consequence of

mTOR-I treatment. The underlying mechanism is not totally
clarified.

Aboujaoude et al. have hypothesized that the lymphedema
could be connected with increased lymph flow along with
lymphatic interruption in the affected extremities secondary to
the surgical procedures, in addition to the well-identified effect
of SRL in increasing vascular permeability and vasodilation [95].

Moreover, Huber et al. had demonstrated an anti-
lymphangiogenic activity of mTOR-I, which is not restricted to a
specific mTOR-I, rather it is a general phenomenon of the whole
class.

Before establishing the diagnosis of lymphatic disease caused
by mTOR-I, it is essential to rule out other causes such as
neoplasia, infection, and venous obstruction. Unfortunately,
reduction or discontinuation of the drug therapy is the only
treatment for such patients [4,15].

Cutaneous Adverse Effects
This includes lymphedema (described above), acne, epistaxis,

vasculitis and nail disorders [1,3,15]:

• Acne, folliculitis: Acne is reported in 15% to 25% in recipients
treated with SRL. Predominantly in male patients suggesting
hormonal etiology.

• Chronic peripheral edema (8% to 64%), affecting primary
lower limbs.

• Angioedema (acute subcutaneous edema), found in 15% of
patients, developed within few hours and disappeared in less
than 4 days. They were non-pruritic, non-erythematous, and
localized mainly on the face, with oral cavity involvement.

• Nail involvement: includes fragile and thin nails, longitudinal
ridging, distal onycholysis, and erythema.

• Skin and scalp hair abnormalities include mild alopecia or
hypertrichosis of the face.

These adverse events were not serious in most cases;
however, in 12% of patients it was necessary to withdraw the
therapy [1,3,15].

Gonadal Effects
There are several publications highlighted the effects of m-

TORI particularly SRL on male gonads, these studies have
focused on sex hormones production, erectile function, and
fertility.

It was found that SRL therapy had significantly lowered
testosterone levels while it had increases the gonadotrophic
hormones (FSH and LH). Additionally, a substantial reduction of
total sperm quantity was noticed.
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Nevertheless, patients receiving a sirolimus-based regimen
had a significant decreased fathered pregnancy rate, compared
with those administered sirolimus-free regimen (5.9 vs
92.9 pregnancies/1000 patient-years). Thus, men who desire to
father children must be well educated of the risks and benefits
associated with exposure to sirolimus. The underlying
mechanisms still remains obscure. Feng et al. had found that SRL
assumes a focal inhibitory part on a stem cell factor (SCF)/c-kit-
dependent process in spermatogonial proliferation via the PI3-
K/AKT/p70S6K pathway in the animal models [96-100].

In females, sirolimus may cause infertility, menstrual
irregularities, secondary amenorrhea, and increases in
luteinizing hormone and follicle-stimulating hormone. Boobes et
al. were the first to demonstrate the suppressive effect of SRL on
the ovaries of renal transplant recipients. Further study by Yu et
al. had proved that inhibition of mTORi in granulosa cells and
ovarian follicles resulted in compromised granulose proliferation
and reduced follicle growth. Moreover, Yu and his colleagues
detected increased fraction of cells that underwent anomalous
mitotic events during mTOR inhibition in animal models [100].

The potentiality for everolimus to cause infertility in male and
female patients is not known yet, however, male infertility and
secondary amenorrhea have been observed [95].

Renal Nephrotoxicity
Although m-TOR-I were considered for long time as non-

nephrotoxic drugs, however, experimental studies had shown
that mTOR-inhibitors can influence renal structure and function,
though their nephrotoxicity is much less than CNIs
nephrotoxicity [1,4,29].

Following effects were noted with m-TOR-I:

1. mTOR-inhibitors can impairs recovery from ischemia in
animal models of renal transplantation.

2. mTOR-inhibitors has synergistic effects if combined with
CNI, and can worsen the CNI toxicity.

3. Delayed graft function is often seen with mTOR-inhibitors.
Literatures have reported that patients on SRL stayed on
dialysis for longer time compared to others and this was
attributed to increase frequency of acute tubular necrosis,
however, recent literature suggested that the hazard risk
may be lower with EVR, due to the differences in
pharmacokinetics between each and the lack for the
loading doses in EVR.

4. New-onset proteinuria has been accounted for in two-
thirds of patients converted to SRL. Histological lesions in
biopsied patients resemble focal segmental
glomerulosclerosis; in spite of the fact that it is not clear
whether this is recurrent primary kidney disease, chronic
allograft damage or happens as a result of CNI withdrawal
and/or SRL introduction, therefore baseline proteinuria
should be measured before any change regimen. It is
conceivable that withdrawal of CNIs prompts
hyperfiltration on the grounds that these medications have
constrictive impacts on the renal vasculature. Reasons for
proteinuria caused by SRL therapy could be explained by

hemodynamic changes, podocyte injury, tubular
dysfunction and antagonism of vascular endothelial growth
factor.

5. Recent literatures had suggested that mTOR-I-induced
proteinuria through reduction of glomerular nephrin
expression in transplanted patients. It's advisable to add
either ACEIs or ARBs when convert patients from CNIs to
sirolimus for their vasoconstrictive properties on
glomerular efferent arterioles [1,3,4,29,42].

6. Everolimus has similar effects on increasing proteinuria,
and reversibility has been observed when patient
discontinued the medicine and switched back to CNI
therapy [26,27].

7. Renal graft thrombosis: An increased risk of kidney arterial
and venous thrombosis, resulting in graft loss, has been
reported, mostly within the first 30 days post-
transplantation [26,27].

8. Tubular dysfunction: biochemical disorders like
hypokalemia, hypophosphatemia, hypocalcaemia, and
hypouricaemia was noted in some patients following
switching from CNI to sirolimus, suggesting chronic tubular
toxicity. Sirolimus therapy might alter tubular handling of K,
phosphate and uric acid by renal tubules [1,3,15]. Renal
magnesium wasting and potentially significant
hypomagnesemia was also noted. Viorica Bumbea et al,
interestingly had found that the renal phosphate threshold
and uric acid clearance were altogether lower in patients
taking sirolimus compared to those taking everolimus,
despite similar PTH levels [3].

Special Considerations

Vaccinations
Immunosuppressants may affect the response to vaccination,

rendering it to be less effective. Usage of live vaccines should be
avoided [26].

Impact of mTORi on pregnancy
There are inadequate data regarding the use of m-TOR I in

pregnant women. Studies in animals have shown reproductive
toxicity including embryo/foetotoxicity. The potential risk for
humans is unknown.

There are only 11 cases of transplanted women who received
SRL during pregnancy were reported in literatures, hence the
real safety has not yet been determined and there is no real
existing data to strongly confirm that SRL/EVL are teratogenic. In
one of those cases, SRL treatment was introduced at 24 weeks
of pregnancy and the infant was born with cleft lip-palate and
microtia. The first reported case of successful delivery in a renal-
transplant female receiving SRL (in association with CNI) through
all gestation was reported by Guardia et al. in 2006,
subsequently in 2008 and 2011 two cases of successful delivery
in a renal transplant females treated with SRL were reported by
Chu et al. and Framarino-dei-Malatesta respectively. With
regards to EVR there is, as SRL, little experience about its role
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during pregnancy. Only two cases of successful pregnancies in 2
kidney-transplant recipients treated with EVR during pregnancy
were reported. All these cases demonstrate that either SRL or
EVR might not be an absolute contraindication for pregnancy,
however, due to limited available data most nephrologists prefer
to avoid m-TOR I therapy completely during pregnancy and
advise to be discontinued and switched to CNI at least 8-12
weeks prior to attempted conception unless the potential
benefit outweighs the potential risk for the fetus [24,26-28,100].

Impact of mTORi on breast-feeding
Due to the potentiality for adverse reactions in the nursing

infant, breast-feeding is not recommended by the manufacturer
during therapy and for 2 weeks following the last dose [26,27].

Conclusion
mTOR-inhibitors are very promising immunosuppressive

agents, It has different mode of action with different adverse
effect profile and can be used as de novo therapy or as a
substitute immunosuppressant mainly to CNI.

The promising effect of reduced nephrotoxicity compared to
CNI, hypertension and lower incidence of post-transplant
malignancy in addition to the lower viral rate infections; all had
make them a good alternative to CNI therapy, however, delayed
wound healing, lymphoceles and hematological disorders
remained a great challenge with this therapy.

Furthermore, mTOR I has different implication outside
transplant field, though their use remained off labeled in most.
There is accumulating evidence that the mTOR pathway is
involved in the pathophysiology of a number of neurological,
genetic and inflammatory diseases that brand mTOR I as
promising and novel agent in such diseases, however in most;
this evidence is derived from basic science and animal models.
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