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Recent Advances in Management 
of Diabetic Nephropathy

Abstract
Diabetic nephropathy (DN) is not only the most common cause of end-stage 
renal disease world-wide but also increases the risk of mortality up to fourteen 
times compared to normoalbuminuric diabetic patients. After a long time of 
inertia, recent advances in the management of diabetes have added a valuable 
share to the effort of prevention and slowing the progression of DN. Beyond 
their hypoglycemic effects, dipeptidyl peptidase-4 inhibitors, and sodium glucose 
transporter 2 inhibitors have shown unique renoprotective mechanisms in both 
type 1 (T1DM) and type 2 diabetes mellitus (T2DM). Advances in this field included, 
in addition, the introduction of many anti-oxidant and anti-inflammatory agents 
that proved in experimental and in vitro studies to add significant impact on 
development and progression of DN. Most of these agents are still waiting for 
clinical studies to confirm their safety and efficacy. Beside their role in improving 
plans of management, the new discoveries have improved our understanding of 
the pathogenesis of DN. This review will cover the updates in established and 
potential therapeutic modalities that would improve the management of DN after 
discussing the pathogenic pathways that help in understanding the mechanism of 
action of these different treatments.
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Introduction 
In its earliest stage, diabetic nephropathy (DN) manifests by renal 
hyper-perfusion and hypertrophy [1]. This stage starts with the 
onset of diabetes in T1DM before insulin treatment. This is called 
stage 1 and is followed few years later by stage 2 characterized 
by clinical silence and morphologic changes characteristic of 
diabetic glomerulosclerosis. Glomerular filtration rate (GFR) 
is still higher than normal during this stage. Some diabetic 
patients continue in this stage throughout their lives. Increased 
urine albumin excretion (UAE) was first described by Keen and 
Chlouverakis [2] in 1963. However, microalbuminuria became 
popular twenty years later after the results of fourteen years 
longitudinal study that disclosed the predictive value of increased 
UAE were published [3]. Microalbuminuria is the salient feature 
of stage 3 DN, also called the stage of incipient nephropathy, and 
is defined as UAE >30 mg/d, >20 μg/min, or albumin:creatinine 
ratio (ACR) >30 mg/g creatinine. This stage is initially associated 
with increased GFR. However, GFR starts a consistent decline 
that becomes more evident with the continuous increase of 
UAE above 300 mg/d, 200 μg/min, or when ACR exceeds 300 
mg/g. This is the stage of overt nephropathy, also called stage 
4 DN (Figure 1) [1,4]. Progressive increase in blood pressure 
(BP) is usually associated with these renal changes. After the 
introduction of the different renin-angiotensin system (RAS) 
blockers in the management of DN, little was added to improve 
the management of this disease. Moreover, RAS blockers were 
ineffective in the primary prevention of DN in T1DM and T2DM 
[5-8]. Additional studies failed to demonstrate a renal protective 
effect of RAS blockers when used in diabetic patients without 
overt nephropathy [9]. These results have criticized the use of 
RAS blockers in incipient nephropathy. RAS blockers were then 
limited to patients with overt nephropathy [10,11]. 

The risk of DN is strongly linked to poor glycemic control in both 
T1DM and T2DM [12,13]. In addition, there is strong evidence 
that tight blood sugar control has a significant impact on primary 
prevention of DN [14,15]. However, tight glycemic control is not 
always an easy task. 

After a long time of inertia, many novel agents were introduced 
as potential additions to the standard of care treatment of DN. 
These agents have also improved our understanding of the 
pathogenesis of DN. Moreover, the introduction of some of 

these agents will change the strategy of management from being 
postponed to stage 4 DN to a much earlier stage, namely, stage 
1DN. This hypothesis needs verification and assessment of cost 
effectiveness.

In this review, we will concentrate on the different novel 
therapeutic tools highlighting their impact on the prevention and 
withhold of the progression of DN.

Pathogenesis
The overproduction of reactive oxygen species (ROS) is one of 
the hallmarks of diabetic kidney. ROS overproduction is the main 
cause of DN [16]. Hyperglycemia induces nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase enzyme activity and 
is responsible for ROS overproduction [17]. Up-regulation of 
sodium glucose transporter 2 (SGLT2) in the brush border of 
proximal convoluted tubules (PCT) is another pathway of ROS 
overproduction. SGLT2 up-regulation causes uric acid (UA) 
overproduction with consequent NADPH oxidase-ROS induction 
[18]. Excess ROS mediates podocyte apoptosis and alteration 
in the slit diaphragm podocin protein (Figure 2) [19], increases 
intracellular oxidative stress, mitochondrial injury, adenosine 
triphosphate (ATP) depletion [20,21], endothelial injury, RAS 
activation and increased epithelial-mesenchyme transition (EMT) 
with consequent fibrosis [22]. ROS overproduction activates 
the nuclear factor-κB (NF-κB) within the kidney [23]. NF-κB 
translocates to the nucleus to trigger several genes like those 
encoding transforming growth factor-β (TGF-β), chemokine 
ligand 2 (CCL2) also known as monocyte chemoattractant 
protein-1 (MCP-1) and intercellular Adhesion Molecule 1 (ICAM1) 
[24-27]. This leads to macrophage recruitment and excess 
collagen deposition within the diabetic kidney (Figure 3). Beside 
activation of NF-κB, ROS activates protein kinase C (PKC) and 
mitogen-activated protein (MAP) kinase within mesangial cells 
(MCs). All these factors stimulate overproduction of extracellular 
matrix proteins (Figure 4) [27].

Activation of mammalian target of Rapamycin (mTOR) is another 
feature of DN. Hyperglycemia stimulates phosphatidylinosiol-3 
kinase (PI3K) and protein kinase B (AKT) pathways, with 
subsequent activation of mTOR. Activated mTOR is responsible 
for basement membrane thickening, mesangial matrix expansion 
[28], and renal fibrosis. The mTOR induced renal fibrosis is a 
consequence of fibroblast proliferation, EMT and the expression 
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Figure 2 Reactive oxygen species mediated podocyte injury and podocin protein alteration. NADP= Nicotinamide 
adenine dinucleotide phosphate; ROS= Reactive oxygen species.
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Figure 3 Different pathogenic mechanisms of kidney injury possibly induced by uric acid. UA= uric acid; ROS= 
reactive oxygen species; NF-ᴋB= Nuclear Factor kappa B; MCP1= Macrophage Chemoattractant 
protein-1; RAS= Renin angiotensin system; EMT= Epithelium mesenchyme transition; VSMC= Vascular 
smooth muscle cells.
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Figure 4 Hyperglycemia induced mesangial expansion. NADP= Nicotinamide adenine dinucleotide phosphate; 
ROS= Reactive oxygen species; NF-ᴋB= Nuclear Factor kappa B; PKC= Protein kinase C; MAPK= Mitogen-
activated protein kinase; ECM= Extracellular matrix.
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of TGF-β and connective tissue growth factor (CTGF, CCN2) 
[29,30]. Stimulation of MCP1 by mTOR leads to increased 
macrophage recruitment within the interstitium of the kidney 
[30]. In addition, increased mTOR activity can aggravate tubular 
epithelial damage and apoptosis (Figure 5) [31].

CCN2 is the newer alternative name of CTGF. It has an eminent 
role in DN [32]. Within the diabetic kidney, CCN2 is detected 
in almost all cell types [33]. When exposed to high glucose, 
the glomeruli of diabetic rats and human MCs express a high 
activity of CCN2 [34]. In the diabetic kidney, CCN2 expression is 
stimulated by TGF-β1, AGE, and angiotensin II (AII). The CCN2 
stimulates EMT, fibroblast proliferation, and extracellular matrix 
accumulation (Figure 6) [32].

Nephrin and podocin are slit diaphragm proteins synthesized 
by podocytes. They are essential for the maintenance of the 
sieving properties of the glomerular basement membrane [35]. 

The addition of AII to cultured podocytes causes in vitro loss 
of nephrin [36]. Moreover, infusion of AII in the renal artery of 
rat kidney results in effacement of foot processes of podocytes 
with an increase in proteinuria [37]. In diabetic rats, AII synthesis 
blockers preserve the nephrin within the slit diaphragm and 
decrease UAE [38]. AII down-regulates nephrin through a 
transmembrane receptor called Notch1. Notch1 plays a role 
in cell differentiation and renal development. When Notch1 
receptor is activated, it leads to the release of the active Notch1 
intracellular domain (ICN1). ICN1 translocates to the nucleus. 
Additionally, notch 1 triggers another transcription factor called 
the snail that exists within the cytoplasm of podocytes. Upon 
signaling of notch1 by AII, both ICN1 and snail translocate to 
the nucleus and share in repression of nephrin expression, 
stimulation of apoptosis, podocyte loss and consequent increase 
of UAE (Figure 7) [38,39]. Inhibition of Notch1 signaling pathway 
in human and animal podocytes was associated with restored 
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Figure 5  Consequences of mTOR activation induced by hyperglycemia. mTOR= mammalian target of rapamycin; 
BM= basement membrane; EMT= Epithelium mesenchyme transition; CCN2= Connective tissue growth 
factor; TGFβ= Transforming Growth Factor β; MCP1= Macrophage chemoattractant protein.
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Figure 6 CCN2 mediated glomerular and interstitial fibrosis. mTOR= Mammalian target of rapamycin; AGE= 
Advanced glycation endproducts; A II= Angiutensin II; TGFβ= Transforming Growth Factor β; CCN2= 
Connective tissue growth factor; EMT= Epithelium mesenchyme transition.
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nephrin protein, decreased podocyte apoptosis, and attenuated 
UAE [40]. As mentioned before, ROS induced by hyperglycemia 
mediates alteration of podocin (Figure 2) [19]. 

The expression of RAS genes is induced in diabetes [41]. 
Angiotensin receptors1 (AT1R) are up-regulated in diabetic rat 
kidneys, while AT2R are down-regulated [42]. In streptozotocin-
induced diabetes rats, increased intraglomerular capillary 
pressure is the initiating early event. Increased mechanical strain 
increases AII production and up-regulates AT1R. This increase in 
AII maintains and aggravates glomerular hypertension [43,44]. 

Glomerular hyperperfusion and hyperfiltration are the 
earliest manifestations of diabetic kidney. These glomerular 
hemodynamic changes are due to afferent and to less extent 

efferent arteriolar vasodilatation as a consequence of changes 
in various biochemical factors, including nitrous oxide, atrial 
natriuretic factor, adenosine, glucagon, and insulin [45]. 
Increased glucose in the glomerular ultra-filtrate stimulates 
SGLT2 gene with consequent increased proximal tubular 
absorption of filtered sodium and glucose. Distal sodium delivery 
will consequently diminish. Sodium reabsorption by the macula 
densa would accordingly diminish. Hence, ATP consumption 
and adenosine monophosphate (AMP) production diminish. 
Adenosine, the byproduct of AMP, is a potent vasoconstrictor. 
Decreased availability of adenosine results in afferent arteriolar 
vasodilatation (Figure 8) [46,47]. This tubuloglomerular feedback 
would start glomerular hyperperfusion and hyperfiltration. These 
hemodynamic changes trigger AII that maintains these changes. 

Tubulo-
glomerular
feedback

Hypeperfusion,
Shear stress

Angiotensin II

Notch1 receptor

Podocytes

Nucleus

Nephrin

proteinuria

Apoptosis

active Notch1
intracellular domain

snail protein

Figure 7 Mechanism of podocyte injury and proteinuria induced by angiotensin II.

Figure 8 Tubuloglomerular feedback: impact of low salt intake and SGLT2 inhibitors. UF= glomerular 
ultrafiltrate; SGLT= Sodium glucose transporter; PCT=proximal convoluted tubules; DCT= 
distal convoluted tubule; MD=Macula densa; AMP= adenosine monophosphate;  VD= 
Vasodilation; AA= Afferent arteriole.
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In addition, SGLT2 contributes to hyperglycemia-induced PCT cell 
senescence. Knocking down of SGLT2 can abort in vitro induction 
of P21 in PCT when exposed to hyperglycemia. P21 inhibits cyclin-
dependent kinase (CDK). CDK is an inhibitor of cell senescence 
(Figure 9) [48,49]. 

Dipeptidyl peptidase-4 (DPP-4) is a cell surface enzyme that was 
originally characterized as a T cell cluster of differentiation 26 
(CD26). DPP-4 degrades incretins secreted by the gut. It is also 
found in the endothelial cells in multiple organs including the 
kidney [50]. The soluble circulating form of DPP-4 is responsible 
for DPP-4 activity in human serum and is originally shed from cell 
membranes [51]. MicroRNA-29 (miR29) suppresses DPP-4 gene in 
normoglycemic status. This suppression is lost in hyperglycemic 
state with consequent increase of cell surface DPP-4 activity [52]. 
DN is characterized by increased expression of surface DPP-4 on 
endothelial and tubular epithelial cells. Activated DPP-4 induces 
phosphorylation of integrin β1. Activated DPP-4 phosphorylated 
integrin β1 complex up-regulates TGF β receptor dimerization 
and activates the vascular endothelial growth factor receptor 
type 1(VEGFR1). Up-regulated TGF β receptor and VEGFR1 
stimulate endothelial-mesenchymal transition (EndMT). These 
changes enhance fibrogenesis (Figure 10) [53]. 

The serum level of fibroblast growth factor 23 (FGF23), the 
phosphatonin responsible for renal phosphate elimination, is 
higher in T2DM [54]. Although the kidneys of normal rats do 
not express FGF23 mRNA, it appears in the kidneys of diabetic 
rats 4 mo after onset of diabetes and increases thereafter [55]. 
FGF23 suppresses 1-α hydroxylase gene. This leads to decreased 
calcitriol synthesis. An inverse relation between serum calcitriol 
and serum renin activity was encountered in a large cohort study 
[56], a finding that discloses the cross talk between FGF23 and the 
RAS (Figure 11). Vitamin D receptors (VDRs) suppress activation 
of NF-κB and MCP1 induced by hyperglycemia [57]. Stimulation 
of VDRs by 1-α,25-dihydroxyvitamin D3 suppresses activation 

of RAS and TGF-β induced by hyperglycemia in MCs [58]. After 
adjustment for GFR, and parathyroid hormone, FGF23 was found 
as an independent predictor of DN progression [59]. Klotho acts 
as a co-receptor to enhance FGF23 binding to its ubiquitous FGF 
receptors. Deficient Klotho is one of the causes of increasing level 
of FGF23 in chronic kidney disease (CKD) [60]. Plasma α-klotho 
level negatively correlates with UAE in T2DM patients [61]. In 
patients with T2DM, systemic hypertension, and albuminuria, 
the RAS blockers stimulate α-klotho production [62,63].

Another feature of diabetic patients is the persistent elevation 
of endothelin level. Endothelin-1 (ET-1) is a powerful 
vasoconstrictor agent with additional pro-inflammatory and pro-
fibrogenic activities. ET-1 is incriminated in DN progression [64]. 
ET1 has 2 receptor named ETA and ETB. Stimulation of ETA causes 
vasoconstriction, cell proliferation, and extracellular matrix 
accumulation while ETB mediates vasodilatation [65]. Increased 
ET-1 in the kidney of T2DM db/db mice positively correlated with 
collagen deposition within their kidneys [66].

In the last 2 decades, inflammation has evolved as an important 
pathogenic mechanism of DN. The identification of transcription 
factors, cytokines, chemokines, adhesion molecules, and nuclear 
receptors would lead to the development of new therapeutic 
strategies [23]. NF-kB is the pivotal transcription factor involved 
in DN. NF-κB activators includes hyperglycemia, free oxygen 
radicals, and proteinuria [67]. Beside its role in macrophage 
recruitment and excess collagen deposition, activated NF-κB 
triggers PKC [68], RAS [69], advanced glycation end product 
proteins (AGEs) accumulation [70], and oxidative stress [71]. 
NF-κB activation can be offset by thiazolidinediones [72], 
1,25-dihydroxyvitamin D3 [73], and Nuclear factor erythroid 
2-related factor 2 (nrf2) agonists [74]. Interleukin-1 (IL-1), IL-6, 
IL-18, and tumor necrosis factor-α (TNF α) have distinguished 
role in the pathogenesis of DN [75]. Nrf2 regulates the synthesis 
of antioxidants and cytoprotective factors that can muffle the 
oxidative stress and the pro-inflammatory signals [76]. It does 
not exist free in the cytoplasm, but rather as an inactive complex 
bound to Kelch-like ECH-associated protein 1 (Keap1) [77]. Keap1 
has many sensors of the intracellular redox state. On modifying 
these sensors, ROS can dissociate Nrf2 from Keap1/Nrf2 complex 
[78]. The dissociated Nrf2 translocates to the nucleus where 
it triggers the genes encoding the antioxidant and detoxifying 
molecules, thus activating their transcription. In addition, Nrf2 
inhibits transcription of NF-kB [79]. Nrf2 is adaptively activated in 
diabetic status but is not activated enough to resist the oxidative 
stress provoked by hyperglycemia [80]. The association between 
oxidative stress and inflammation stimulated planning of studies 
looking for efficiency of Nrf2/Keap1 activators as potential 
renoprotective agents [81].

The Janus kinase/signal transducers and activators of 
transcription (JAK/STAT) pathway evidently mediate the 
contribution of hyperglycemia to proliferation, inflammation, 
and fibrosis encountered in DN [82]. Exposure of cultured 
glomerular MCs to both high levels of glucose and A2 activates 
JAK/STAT signaling [83]. A significant increase of JAK2 protein in 
glomerular and tubulointerstitial compartments is encountered 
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Figure 9 SGLT2 mediated PCT cell senescence. SGLT= 
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Figure 10 DPP-4 mediated renal fibrosis. DPP4= Dipeptyl peptidase-4; TGFβ= Transforming 
Growth Factor β; EndMT= Endothelial-mesenchymal transition.
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Figure 11 FGF23 mediated increased renin activity 
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in patients with DN, with a negative correlation between JAK2 
mRNA levels and GFR [82].

Diagnosis of DN
The pathologic changes of DN include mesangial expansion, 
diffuse glomerular basement membrane thickening, diffuse 
glomerulosclerosis, nodular glomerulosclerosis, afferent and 
efferent arteriolar hyalinosis, interstitial mononuclear cell 
infiltrate, tubular atrophy, and interstitial fibrosis [84]. Moreover, 
diabetic patients can develop non-diabetic renal disease with a 
prevalence that varies from 10% to 85% in different studies [85-
88]. Frequently, diabetic patients do not require kidney biopsy 
when they develop proteinuria unless non-diabetic kidney 

disease is suspected [89]. This suspicion is raised when duration 
of diabetes is less than 5 years, BP is normal, microscopic or frank 
hematuria is detected, or when diabetic retinopathy is absent 
in T1DM [89]. However, the presence of microscopic hematuria 
does not preclude DN. T2DM patients can develop DN without 
antecedent diabetic retinopathy in contrast to T1DM [90]. 

Management of DN
Therapeutic interventions that are clinically approved are going 
to be discussed under the heading “approved interventions”. 
Other modalities that are not yet clinically approved will be 
discussed under “potential therapeutic modalities”.

Approved interventions (Table 1)
These interventions include control of BP, control of blood sugar, 
use of hypolipidemic agents, quitting smoking, diet control, 
managing hyperuricemia, hyperphosphatemia and metabolic 
acidosis, use of pentoxifylline, sarpogrelate and use of vitamin D 
receptor agonists.

Control of BP: Control of BP significantly muffles GFR decline in 
pre-dialysis DN patients [91]. Target BP in DN patients is 130/80 
mmHg [92]. In DN patients with proteinuria, RAS blockers are the 
1st anti-hypertensive agents of choice thanks to their significant 
impact on GFR decline [93,94]. They achieve their favorable effect 
through many mechanisms including the reduction of glomerular 
tuft pressure [95], the inhibition of cytokine overproduction [96-
98], the increase of serum and tissue angiotensin1-7 [99] and the 
stimulation of Klotho gene expression. Klotho gene suppression 
might mediate RAS-induced renal damage, a mechanism 
that clarifies the renal protective effects of these agents [61-
63]. However, RAS blockers are not able to fully attenuate 
hyperfiltration in T1DM patients. This failure was still observed 
even with dual RAS inhibition using angiotensin-converting 
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enzyme (ACE) and direct renin inhibitors [7,8]. Moreover, RAS 
blockers failed to fully prevent the progression of renal injury in 
T1DM [100]. In addition, the efficacy of ACE inhibitors in reducing 
the incidence of overt nephropathy was not encountered 
in 2 studies in T2DM with incipient nephropathy [101,102]. 
Moreover, the incidence of end-stage renal disease (ESRD) was 
not significantly decreased using either ACE inhibitors [103] or an 
angiotensin II type 1 receptor blocker (ARB) [104]. RAS blockers 
prescription became limited to diabetic patients with overt 
nephropathy [10,11].

Control of blood sugar: In order to appreciate the impact of 
optimized blood sugar control on the course of DN, Fioretto 
et al. [105], looked at kidney pathologic changes in DN of 
T1DM patients after undergoing Pancreas transplantation. 
Repeated kidney biopsies demonstrated that by 10 years post-
transplant, normoglycemia was associated with the reversal of 
glomerulopathy, interstitial fibrosis and tubular atrophy initially 
encountered [105]. In the United Kingdom Prospective Diabetes 
Study (UKPDS), blood sugar control for 12 years was associated 
with 33% reduction in the relative risk of progression from 
normoalbuminuria to microalbuminuria or from micro to overt 
proteinuria [106]. In the tight glycemic control group, the chance 
of doubling of serum creatinine was also significantly reduced. 
Control of blood glucose might also delay CKD progression and 
postpones the need for dialysis [107,108]. In a recent study of 
891 670 US diabetic veterans with estimated GFR >60 mL/min 
per 1.73  m2, HbA1c >7.0% was associated with worse risk of 

all-cause mortality and incident CKD in all systolic BP categories 
[109]. On the other hand, a meta-analysis of 5 mega-trials that 
randomly assigned 27159 T2DM patients showed that intensive 
glycemic control (mean HbA1c=6.6%) compared to those on 
convention care (mean HbA1c=7.4%) did not improve overall or 
cardiovascular mortality or ESRD [110]. 

Metformin, thiazolidinediones, glucagon like peptide-1 (GLP-1) 
agonists, DPP-4 inhibitors, and SGLT2 inhibitors have additional 
favorable effects in DN patients beyond their hypoglycemic 
effects.

Metformin activates adenosine monophosphate kinase (AMPK) 
pathway [111,112]. AMPK activation leads to inhibition of mTOR 
[113]. Metformin is also able to inhibit mTOR independent 
of AMPK [114]. Metformin inhibits hyperglycemia-induced 
podocyte apoptosis, an effect mediated by AMPK activation and 
mTOR signaling inhibition [115] and through the restoration of 
expression of nephrin [116]. In addition, metformin can promote 
mesenchymal to epithelial transition (MET), a consequence of up-
regulation of the epithelial marker cadherin [117]. In T2DM rats, 
metformin suppresses inflammatory, oxidative and profibrotic 
renal damage markers and thus improves renal damage [118]. 
The kidney excretes metformin, thus it can accumulate with the 
continuous decrease of kidney function. In order to avoid adverse 
effects, the dose of metformin should be reduced by 50% if GFR 
goes below 45 mL/min and should be stopped if GFR becomes 
below 30 mL/min [119]. 

Drug class On-target action Off-target actions Remarks Ref.
Antihypertensive RAS 

blockers
Blood pressure 

control
UAE↓, GTP↓, K+ ↑, AT1-7↑, 

cytokines↓, Klotho↑
Failed to prevent DN, can accelerate progression 

in advanced CKD & old age
[7,8,10,11, 61-

63, 91-103]

Blood Sugar control Normalize blood 
sugar 

UAE↓, incident CKD↓, CKD 
progression ↓

Hypoglycemia increases morbidity & mortality 
risk esp with SU & insulin [105-109]

•	Metformin ‘’ AMPK↑, mTOR↓ ↓ dose by 50% if GFR<60 mL/min, stop if 
GFR<30 [111-119]

•	Pioglitazone ‘’ UAE↓, NF-κB↓, CKD 
progression ↓ Salt and water retension, osteopenia, BW↑ [120-124]

•	GLP-1 agonists ‘’ BW↓, UAE↓, ROS↓, TGF-β1↓, 
CCN2↓ Nausea, vomiting, stop if GFR<30 [125-127]

•	DPP-4 inhibitors ‘’ UAE↓, ROS↓, CCN2↓,EndM 
T↓, CKD progression ↓

Hypoglycemia less likely, dose adjustment with 
CKD progression except Linagliptin [128-140]

•	SGLT2 inhibitors ‘’ Hyperfiltration ↓, BW↓, 
BP↓,UA↓, ROS↓. stop if GFR<30 [141-157]

Statins ↓Serum Cholesterol ↓CVD No effect on stroke, CKD progession or mortality [158-160]
Quitting smoking ↓DN progress [161-163]

Diet control
•	salt restriction ↓BP, ↓UAE, ↓DN progress Salt paradox in very low salt [164-169]
•	ptn restriction ↓DN progress Of value only in T1DM [170-176]

Hypouricemic agents ↓UA ↓UAE, ↓DN progress [178-188]
Phosphate handling

•	↓P intake +sevelamer ↓Serum P ↓DN progress, ↓mortality [189,199]
HCO3 supplement Treat acidosis ↓DN progress May↑BP, may ↑edema [200-202]

Pentoxifylline RBCs rheology ↓UAE, ↓DN progress 1200 mg/day [203,204]
Sarpogrelate ↓thromboxane A2 ↓UAE, ↓MCP1 [205,206
Paricalcitol ↓PTH ↓UAE [207]

Table 1: Approved interventions that can prevent development and progression of DN.
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Peroxisomal proliferator-activated receptor γ (PPARγ) is 
expressed in different renal cells that include MCs, tubular cells, 
and renal medullary interstitial cells [120]. The thiazolidinedione, 
pioglitazone hydrochloride, is one of PPARγ agonists that have anti 
proteinuric effect in animal models of T1DM and T2DM through 
amelioration of glucose-induced oxidative stress, and down-
regulation of MCP1, ICAM1, NF-κB, and TGF β [23]. In order to 
explore the possible renoprotective mechanisms of pioglitazone 
hydrochloride, its effect on urinary podocalyxin and MCP-1 
excretion were studied in T2DM. After 12 weeks of pioglitazone 
treatment, there was a significant decline in systolic and diastolic 
BP, UAE, and urinary podocalyxin excretion. The podocyte-
protective capacity of pioglitazone was partly attributed to its 
effective suppression of local renal inflammation induced by 
diabetes [121]. The antiproteinuric effect of pioglitazone was still 
evident after its administration to T2DM patients already treated 
with RAS blockers [122]. In T2DM patients at stages 3 and 4 of CKD 
treated with losartan and pioglitazone, the declines in GFR below 
baseline measurements were significantly slower compared 
with those treated with losartan alone [123]. After 12 wk of 
pioglitazone treatment, urinary TGF- β 1 excretion decreases 
significantly [124]. Pioglitazone use is associated with increased 
body weight together with salt and water retention. Precaution 
is therefore needed to avoid these undesirable adverse effects.

GLP-1 receptors deficient Rats develop up-regulation of renal 
NADPH oxidase, increased glomerular ROS, reduced renal 
cAMP and protein kinase A (PKA) activity, increased UAE, and 
advanced mesangial expansion [125]. These changes could be 
explained by the antioxidative properties of GLP-1. The GLP-1 
agonist exendin inhibited expression of TGF- β 1 and CCN2 by 
human mesangial cells cultured in high glucose medium [126]. 
Liraglutide suppressed the progression of DN as demonstrated 
by decreased levels of renal NADPH oxidase, decreased levels 
of glomerular ROS, elevated renal cAMP, elevated renal PKA 
activity, reduced UAE and mesangial expansion in diabetic mice 
[121]. We still lack clinical studies of GLP-1 agonists in patients 
with T2DM and moderate-to-severe CKD [127].

DPP-4 inhibitors were reported as beneficial renoprotective agents 
against DN in both experimental and clinical studies. In clinical 
practice, two types of DPP-4 inhibitors are used: Vildagliptin, 
sitagliptin, and saxagliptin are dipeptide mimetics while 
linagliptin and alogliptin are nonpeptidomimetics. In addition 
to their hypoglycemic effect, DPP-4 inhibitors are protective 
against kidney fibrosis [52]. Vildagliptin treatment significantly 
decreased UAE, improved GFR, and dose-dependently inhibited 
interstitial expansion, glomerulosclerosis, and the thickening of 
the glomerular basement membrane and significantly decreased 
renal tissue expression of T GF- β1 in T1DM rats with DN [128]. 
When T2DM patients were treated by vildagliptin for 8 weeks 
in a single-arm clinical study, UAE significantly decreased by 
44.6% [129]. On the other hand, treatment of T2DM rats with 
sitagliptin did not significantly affect kidney size, mesangial 
expansion, glomerular atrophy, glomerular basement membrane 
thickening, tubular degeneration, tubular atrophy, or interstitial 
fibrosis while significantly reduced global glomerulosclerosis 

and vascular glomerular pole hyalinosis [130]. Sitagliptin 
was able to significantly decrease UAE in normoalbuminuric, 
microalbuminuric, and overt proteinuric patients in a small-
uncontrolled clinical trial on thirty-six T2DM patients [131]. In 
comparison to other oral hypoglycemic agents that achieved a 
comparable decrease in HbA1c, sitagliptin significantly reduced 
UAE in an open-labeled, prospective, randomized study in T2DM 
[132]. However, a more recent and larger uncontrolled trial of 
sitagliptin in T2DM patients failed to show a consistent favorable 
effect on UAE. While two-thirds showed a reduction, one-third of 
the patients experienced an exacerbation of UAE. Reduction of 
UAE was likely related to reduction of BP and eGFR [133]. Because 
of its non-renal route of excretion, linagliptin, in contrast to 
other DPP-4 inhibitors, does not need dose adjustment with GFR 
decline. A pooled analysis of four clinical studies of 217 T2DM 
patients with increased UAE that are receiving stable doses of 
RAS inhibitors, patients were randomized to either linagliptin 5 
mg/d (n=162) or placebo (n=55). After 24 wk of treatment, UAE 
decreased significantly in the linagliptin group (-32% vs -6% in 
placebo group) [134]. Linagliptin directly inhibits DPP-4- integrin 
- β1 interaction, and thus blunts pathological TGF- β signaling 
and restores the physiological balance of VEGF receptors. 
Consequently, EndMT and subsequent renal fibrosis are inhibited 
[53]. Over five thousands of inadequately controlled T2DM 
patients were recruited to 13 phase 2 or phase 3 randomized, 
double-blind, placebo-controlled, clinical trials of linagliptin, 
out of them 3505 received linagliptin, and the remaining cases 
received placebo. The primary composite outcome included the 
switch to a higher grade of albuminuria, the increase of serum 
creatinine above 250 μmol/L, the reduction of eGFR by 50%, the 
development of acute kidney injury, or death from any cause. 
The primary composite outcome was significantly lower in the 
linagliptin group (12.8% in linagliptin versus 15.6% in the placebo 
group) [135]. The renoprotective effect of linagliptin possibly 
extends beyond DN. In comparison to telmisartan, linagliptin 
significantly decreased interstitial fibrosis in 5/6 nephrectomized 
rats. UAE reduction was comparable to telmisartan in these 
animals [136]. Saxagliptin add-on treatment in a rat model of 
T1DM has limited renal hypertrophy, TGF-β upregulation, NF-κB-
mediated macrophage infiltration, and histological markers of 
tubulointerstitial fibrosis in spite of the lack of change in UAE [137]. 
In the Saxagliptin Assessment of Vascular Outcomes Recorded 
in Patients with Diabetes Mellitus-Thrombolysis in Myocardial 
Infarction 53 (SAVOR-TIMI 53) trial, the renal outcomes of 16492 
T2DM patients, randomized to saxagliptin versus placebo and 
followed for a median of 25 months were evaluated. Saxagliptin 
decreased UAE but had no effect on eGFR, an effect that was 
independent of baseline renal function [138] and the glycemic 
effect of saxagliptin [139]. In order to assess if alogliptin has a 
renoprotective effect, a crossover study with sitagliptin and 
alogliptin in 12 incipient nephropathy T2DM patients taking ARBs 
was performed. The study design consisted of three treatment 
periods: the first period of 4 wk using sitagliptin 50 mg/d followed 
by the second period using alogliptin 25 mg/d for 4 wk instead, 
and lastly the third period of 4 wk reusing sitagliptin 50 mg/d. 
The three treatment periods showed no significant changes in 



2017
Vol. 2 No. 2: 35

10  This article is available in: http://clinical-experimental-nephrology.imedpub.com

Journal of Clinical & Experimental Nephrology
ISSN 2472-5056                                                                                      

body mass index (BMI), BP, serum lipids, serum creatinine, eGFR, 
and HbA1c. After the switch from sitagliptin to alogliptin, the 
studied candidates experienced reduced UAE and 8-hydroxy-2’-
deoxyguanosine (an oxidative stress marker). These observations 
have led to the conclusion that the use of alogliptin on top of ARB 
would offer additional protection against the early-stage of DN 
beyond that attributed to glycemic control via reduction of renal 
oxidative stress [140].

SGLT2 inhibitors, the members of a new class of hypoglycemic 
agents, succeeded to slow progression of DN. SGLT2 inhibition 
increases distal sodium delivery, increased distal tubular 
sodium absorption and hence increases adenosine production, 
causing afferent arteriolar vasoconstriction with fall in renal 
blood flow, decreased hyperfiltration and reduced renal injury. 
In RENAAL trial, losartan treatment of T2DM patients having 
DN was associated with the delay in the onset of ESRD by 28% 
during a mean follow-up of 3.4 years [141]. On the other hand, 
empagliflozin in EMPA-REG trial in T2DM patients with DN 
achieved 55% reduction of the chance of ESRD over a median 
observation time of 3.1 years [142]. Empagliflozin was also 
associated with a significant reduction in incident or worsening 
nephropathy by 39%, progression to overt albuminuria by 38% 
and doubling of serum creatinine by 44% [142]. The significant 
favorable outcome of SGLT2 inhibitors is attributed to their effect 
on hyperfiltration, BP, body weight and serum UA in both T1DM 
and T2DM [143-145]. We would like to emphasize that the effect of 
SGLT2 inhibitors on renal blood flow is not related to RAS blockade 
as empagliflozin and dapagliflozin do increase plasma aldosterone 
and A2 [146,147], as well as urinary ACE and ACE2 [148]. 

One thousand four hundred and fifty T2DM patients receiving 
metformin were randomly assigned to either once-daily 
canagliflozin 100 mg, canagliflozin 300 mg, or glimepiride titrated 
to 6-8 mg for 2 years. In glimepiride, canagliflozin 100 mg, and 
canagliflozine 300 mg groups, eGFR declined by 3.3, 0.5, and 
0.9 mL/min per 1.73 m2 per year respectively (P<0.01 for each 
canagliflozin group versus glimepiride) in spite of comparable 
reductions in HbA1c. UAE declined more with canagliflozin 100 
mg or canagliflozin 300 mg than with glimepiride. These results 
support the renoprotective effect of canagliflozin compared 
with glimepiride independent of the glycemic effect [149]. 
SGLT2 inhibitors muffle hyperglycemia-induced expression of 
toll-like receptor-4, increased nuclear DNA binding for NF-kB 
and activator protein 1, increased collagen IV expression as well 
as IL-6 secretion within renal parenchyma [150]. They can also 
inhibit high glucose- induced oxidative stress and interstitial 
macrophage infiltration. SGLT2 antagonists also suppress fibrotic 
and inflammatory genes [151,152]. Tofogliflozin, ipragliflozin 
and luseogliflozin are other members that showed similar 
renoprotective effects in animal studies [153-155], but lack 
clinical trials. The body weight and BP lowering effects of SGLT2 
inhibitors are still observed in T2DM patients in stage 3a and stage 
3b CKD [156]. However, the ability of these agents to decrease 
renal glucose reabsorption fades with declining GFR. Compared 
with normal or mildly impaired kidney function patients, urinary 
glucose excretion becomes 50% lower in T2DM patients with 
CKD stage 3 when treated with dapagliflozin [157]. This poses 

a negative impact on the hypoglycemic efficacy of these agents 
beyond stage 3 CKD.

Hypolipidemic treatment: All DN patients should be treated 
with statins [158,159]. In spite of the significant impact of 
statin treatment on the risk of atherosclerotic cardiovascular 
disease in CKD patients, they have a minimal effect, if any, on 
CKD progression [160]. Statins did not significantly affect either 
all-cause mortality or stroke in diabetic adults with CKD when 
compared to placebo [158,159]. Fenofibrate treatment increased 
the switch of microalbuminuria to normoalbuminuria in DN 
patients compared to placebo [110].

Quitting smoking: A three years prospective observation study 
of three hundred T1DM patients that have overt proteinuria (178 
were smokers) concluded that smokers did not have a worse 
decline of GFR [161]. On the other hand, a more recent and 
larger study of 3613 T1DM patients has reported that the 12-year 
cumulative risks of microalbuminuria, overt proteinuria and ESRD 
were significantly higher in current and ex-smokers compared 
to non-smokers. This risk increased in heavy smokers [162]. 
Quitting smoking is mandatory in T1DM and T2DM. Smoking is 
an important factor for DN progression in T2DM [163]. 

Diet control: Dietary salt restriction to less than 100 mmol (5-6 
g)/d significantly reduces BP in T1DM and T2DM [164]. Salt 
restriction should be advised very early in the course of diabetes 
mellitus. The reduction of salt intake leads to fall in BP and UAE in 
individuals with diet-controlled T2DM or with impaired glucose 
tolerance [165]. In stage 4 CKD T2DM patients, salt intake is an 
independent factor that affects the annual rate of decline of GFR 
[166]. On the other hand, the effect of sodium intake on the 
clinical outcome is more complicated in T1DM. As an index of 
dietary sodium intake, urinary sodium excretion was associated 
non-linearly with overall mortality in T1DM. Patients at high 
and low extremes of urinary sodium excretion had reduced 
survival. Moreover, the lowest urinary sodium excretion had the 
highest risk of ESRD [167]. Decreased salt intake can exaggerate 
glomerular hyper filtration in the hyperglycemic state (Figure 8) 
[168]. This salt paradox was characterized in T1DM. However, 
clinical observations suggest its existence in T2DM as well [169].

The impact of protein restriction on CKD progression in DN is 
debatable. In 1996, a meta-analysis showed that dietary protein 
restriction effectively slows the progression of DN [170]. In 2000, 
a new meta-analysis showed similar results in T1DM patients 
with DN [171]. However, a more recent meta-analysis appeared 
in 2007 announcing the lack of a significant impact of protein 
restriction on DN progression in either T1DM or T2DM [172]. The 
last meta-analysis was performed in 2015 to report a significant 
impact of protein restriction on the rate of CKD progression 
only in T1DM [173]. The 2013 KDOQI clinical practice guidelines 
update on diabetes and CKD endorsed its KDOQI 2007 guidelines 
regarding the role of protein nutrition in diabetic kidney disease 
(DKD). For CKD stages 1 and 2, a daily protein intake of 0.8 g/kg 
is recommended, while in stages 3 and 4 the allowance should 
decline to 0.6-0.8 g/kg [158]. The source of dietary protein should 
also be considered. Switching to a predominantly vegetarian diet 
is associated with significant decrease of UAE in T1DM patients 
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with DN [174]. Similar results were observed in DN complicating 
T2DM [175]. Essential amino acids content of the vegetarian diet 
is usually sufficient for optimal nutrition [176]. 

The potential protective value of polyunsaturated fatty acids 
in diabetic patients is limited to the cardiovascular system, 
otherwise, no appreciable benefits could be traced in relation to 
DKD [177].

Treatment of hyperuricemia: In T1DM patients with normal UAE, 
serum UA is a strong predictor for the increased UAE. Every 1 
mg/dL increase in serum UA increases the risk of development 
of albuminuria by 80% [178]. In T1DM patients with serum UA 
>6.6 mg/dL, the unadjusted risk of eGFR loss increases 2.4 folds 
in comparison to those with lower level [179]. In addition, serum 
UA was a significant independent predictor of overt proteinuria 
after 18 years follow-up of 263 newly diagnosed T1DM patients 
[180]. In a cross-sectional study of 3212 T2DM patients, 68% 
of the hyperuricemic T2DM patients had DN versus 41.5% of 
T2DM that have normal serum UA [181]. In a longitudinal study 
of more than twenty thousand T2DM patients having eGFR > 60 
mL/min and normal UAE, the incidence of eGFR <60 mL/min., 
increased UAE or both over 4 years of follow-up was 7.9%, 14.1%, 
and 2% respectively. The highest relative risk of eGFR decline 
was encountered in the highest serum UA quintile. There was 
a significant association of serum UA and UAE in the cases that 
developed eGFR decline [182]. A more recent Japanese study 
has reinforced these findings [183]. In a prospective study of 
422 T2DM patients with a disease duration for more than fifteen 
years that were followed for up to 77 mo, serum UA >7 mg/
dL in males and >6 mg/dL in females had a significantly higher 
rate of DN progression, and overall mortality [184]. Compared 
to diabetic control mice, T2DM hyperuricemic mice treated with 
allopurinol experienced smaller increases in UAE. In addition, 
allopurinol attenuated the activation of TGF-β 1-induced Smad 
pathway in tubular epithelial cells [185]. When T2DM patients 
suffering DN were treated with allopurinol for three years, they 
experienced a significant decrease of UAE and serum creatinine 
and a significant increase of GFR [186]. Furthermore, 6 months’ 
treatment of asymptomatic hyperuricemic stage 3-4 CKD 
patients (44% of them had T2DM) with febuxostat significantly 
slowed the decline of GFR compared to placebo [187]. In a recent 
meta-analysis of 19 randomized controlled trials that enrolled 
992 participants proved a significant favorable effect of urate-
lowering medications on the rate of GFR decline [188].

Phosphate handling: Hyperphosphatemia, a consequence of 
impaired excretion by the failing kidney, is a potential risk factor 
for the perpetuation of the rapid decline in renal function [189]. 
Renal phosphate excretion is FGF23 dependent. Serum level of 
FGF23 is higher in T2DM [54] and is an independent predictor 
of DN progression [59]. FGF23 was able to induce TNF α and 
TGF β genes within the mouse kidney [190]. Moreover, FGF23 
stimulates hepatic secretion of IL6 and CRP [191]. According to 
these findings, control of FGF23 as soon as its level starts to raise 
in the very early days of stage 2 CKD is a mandate [192,193]. 
Intestinal phosphate absorption is the most modifiable target 

for FGF23 control. Non calcium-based phosphate binders 
can suppress FGF23, a finding that can explain their anti-
inflammatory action and their role in overall mortality [194-197]. 
Sevelamer carbonate administered to patients with T2DM and 
early kidney disease, significantly reduced FGF 23, lipids, and 
markers of inflammation and oxidative stress, and markedly 
increased antioxidant markers [198]. It also reduced cellular and 
circulating AGEs [193]. Combining dietary phosphate restriction 
and sevelamer in predialysis CKD patients (24% of them were 
diabetic) resulted in a significant decrease in overall mortality 
and progression to dialysis [199].

Control of chronic metabolic acidosis: Metabolic acidosis is 
an independent risk factor for CKD progression [200]. Sodium 
bicarbonate supplementation significantly slowed the rate of 
decline of GFR and improved nutritional status in stage 4 CKD 
patients (27.5% of them were diabetic) [201]. Comparable to 
sodium bicarbonate, base-producing fruits and vegetables can 
correct metabolic acidosis without appreciable increase in serum 
potassium [202]. Long-term prospective placebo-controlled 
studies are still needed to highlight the potential benefits of alkali 
therapy, the ideal type of alkali supplements, and the optimal 
serum bicarbonate level.

Pentoxifylline: Low-dose pentoxifylline (400 mg/d) was tried in 
T2DM patients already maintained on losartan plus enalapril to 
control proteinuria. A significant decrease of UAE from a baseline 
of 616 mg/d to 192 mg/d was noticed after 6 mo of pentoxifylline 
[203]. A higher dose of pentoxifylline (1200 mg/d) added to 
maximum RAS blockade was associated with a slower rate of 
GFR loss and a significant reduction in UAE in stage 4 DN T2DM 
patients [204].

Sarpogrelate: Sarpogrelate, a 5-hydroxy tryptamine receptor 
antagonist, is used as an anti-platelet agent. It inhibits 
thromboxane A2 production [205]. A significant decrease of UAE 
and MCP1 in serum and urine follow Sarpogrelate treatment of 
DN patients [206]. We still lack long-term studies.

Vitamin D receptor agonists: In T2DM patients with overt 
nephropathy, paricalcitol in a dose of 2 μg/d showed a significant 
reduction of UAE [207]. 

Potential therapeutic modalities (Table 2)
Nuclear factor erythroid 2-related factor 2 activation: Nrf2 is 
adaptively activated in diabetic patients. However, this degree 
of activation is not sufficient to combat the oxidative stress 
aggravated by hyperglycemia [81]. Excess ROS generation is 
considered the main cause of the development of DN. Nrf2 is 
emerging as a potential therapeutic target for DN [208]. Non-toxic 
natural compounds can activate Nrf2. Sulforaphane (present 
in cruciferous vegetables), resveratrol (found in grapes), rutin 
(found in buckwheat, black tea, citrus fruits, and apple peels), 
cinnamic aldehyde (present in cinnamon essential oil), curcumin 
(found in turmeric), berberine (found in Berberis Mahonia plant), 
actinidia callosa (found in kiwi fruits), Sinomenine (found in the 
root of the climbing plant Sinomenium acutum), garlic, and Bitter 
Melon are natural Nrf2 activators [209-212]. Nrf2 activation 
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suppressed the expression of TGF β, extracellular matrix proteins 
accumulation, and p21 activation in streptozotocin-induced DN 
[213]. In streptozotocin-induced T1DM rats, sulforaphane was 
able to prevent renal inflammation and fibrosis [214]. In T2DM 
patients with DN, curcumin at the dose of 500 mg/d orally for 15-
30 d caused a significant decrease of UAE, and malondialdehyde 
(a measure of lipid oxidation index), beside suppression of 
inflammatory markers [215]. Hyperglycemia-induced glomerular 
hyperpermeability and a decrease in the junction protein occludin 
are significantly in vitro corrected by the Nrf2 agonist Rutin 
when added to the human renal glomerular endothelial cells 
[216]. Sodium butyrate is another member that activates Nrf2 
transcription probably through inhibition of histone deacetylase 
activity at the nucleus. Consequently, sodium butyrate was able 
to ameliorate DN pathological changes and UAE in streptozotocin-
induced diabetic mice. These effects were completely abolished 
after deletion of the Nrf2 gene [217]. Resveratrol exerts its 
cytoprotective effect through two mechanisms, antioxidant 
activity and Sirtuin 1 gene (silent information regulator T1, SIRT1) 
activation [218,219]. The antioxidant activity of resveratrol is 
mediated by either activation of Nrf2 or directly by scavenging 
different ROS [220]. The SIRT1 cytoprotective action occurs 
through its anti-oxidative, anti-inflammatory, and anti-apoptotic 
mechanisms and the regulation of mitochondrial metabolism 
and autophagy in response to the cell energy and redox status. 
Among many other diseases, resveratrol can prevent kidney 
diseases, and cardiovascular disease through SIRT1 activation 
[218,221,222]. In vitro high glucose-induced mesangial cell 
proliferation and NF-κB activation are attenuated by resveratrol 
[222]. Resveratrol increases AMPK phosphorylation and 
eliminates the suppressive effect of hyperglycemia on AMPK 
phosphorylation with consequent activation of NADPH oxidase 
[220]. The inhibitory effect of resveratrol on excess ROS 
production in the hyperglycemic environment would explain 
the significant attenuation of renal fibrosis in db/db mice when 

treated with resveratrol [223]. Similarly, resveratrol alleviates 
EMT [224] and glomerulosclerosis through suppression of TGF-β/
smad activation [225]. Additionally, Reservatrol increases serum 
adiponectin and its receptors AdipoR1 and AdipoR2 within the 
kidney. Through activation of AMPK–SIRT1–PPARγ axis and 
PPARγ, adiponectin prevented human glomerular endothelial 
cells oxidative stress and apoptosis [226]. Two-week treatment 
of streptozotocin-diabetic rats with resveratrol improved UAE 
and GFR [219]. Resveratrol treatment may also weaken diabetes 
induced increased expression of VEGF [227]. There’s ongoing 
clinical trial looking for the effect of resveratrol on UAE and 
serum creatinine in T2DM. Bardoxolone is Nrf2 activator that 
was first tried as a radiation protection agent [228]. BEAM study 
is a phase 2 double-blind randomized placebo-controlled trial 
of bardoxolone in adult patients with T2DM and CKD (eGFR of 
20 to 45 mL/min per 1.73 m2). Two hundred and twenty-seven 
adults were assigned to receive placebo or bardoxolone methyl 
at a target dose of 25, 75, or 150 mg once daily for 1 year. At 
6 mo onwards of treatment, Bardoxolone methyl significantly 
increased eGFR [229]. A significant increase of UAE, a trend 
of higher systolic BP, nausea, weight loss, and muscle spasm 
represent the most important adverse effects of bardoxolone in 
this study. Twenty-five percent of patients experienced nausea. 
While normal BMI patients lost a mean of 3 kg over the year 
of study, this loss reached 10 kg in high BMI patients. 63% of 
patients on 75 mg of bardoxolone experienced a muscle spasm. 
Hypomagnesemia was also encountered among bardoxolone 
group. This study was followed by a larger study, the BEACON 
study, of 2185 T2DM DN patients in stage 4CKD (eGFR of 15-30 
mL/kg per 1.73 m2). The study was designed to continue for 24 
mo using 20 mg of bardoxolone methyl as a single daily dose in 
the treatment group [230]. At an average follow-up of 9 mo, the 
study was prematurely terminated thanks to the frequent cases 
of heart failure and mortality in the active treatment group in 
comparison to the placebo group. The increased incidence of 

Drug class On-target action Off-target actions Remarks Ref.
Nrf2 activator ↓ROS ↓NF-κB, ↓EMT

•	Curcumin     “ ↓UAE, ↓inflam. No long term trials [215]
•	Resveratrol     “ ↓EMT No clinical trials [218-220]

•	Bardoxolone     “ ↓GFR
UAE↑, BP↑, HF↑, 

mortality↑, nausea, wt 
loss, muscle spasm

[229-230]

Inhibitors of leucocyte recruitment
•	Emapticap Pegol ↓MCP1 ↓UAE I.V administration [236-239]

•	CCX140-B CCR2 antagonist UAE↓, GFR+ Oral administration [240]
•	JAK/STAT signaling inhibition ↓WBCs recruitmment ↓UAE, GFR+ Only animal trial [241]

Exogenous klotho ↓EMT, ↓TGF-β ↓Fibrosis [242,244]

Low dose IL-17A ↓MCP1 ↓UAE, ↓kidney size, ↓mes. matrix, ↓IF, 
↓urine IP10, ↓TNFα, ↓IL-6, and ↓S urea No clinical trials [245]

Aldose reductase inhibitors ↓IC sorbitol, ↓IC 
fructose ↓UAE No adequate RCTs [246]

Ruboxistaurin ↓PKC UAE + , TGF-β+ [247,248]
Sulodexide UAE + [249-251]

Atrasentan Endothelin receptor 
antagonist ↓UAE Serious side effects 

postponed approval [252,253]

Table 2: The Potential therapeutic modalities.
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cardiovascular events is probably unrelated to bardoxolone 
methyl. Increased excretion of RAS blockers in the bardoxolone 
methyl group might have deprived these patients the 
cardioprotective, nephroprotective, and antihypertensive effects 
of RAS blockers [231]. Endothelial dysfunction as a possible 
consequence of hypomagnesemia may be another explanation 
for increased proteinuria, heart failure, increased mortality and 
muscle spasm [232]. Chromium picolinate, chromium histidinate 
[233], polydatin (a glucoside of resveratrol) [234], and the 
tetracycline antibiotic minocycline [235] are other Nrf2 activators 
that have favorable results in experimental studies. However, 
long-term prospective randomized placebo-controlled trials that 
would prove the long-term safety and efficacy of these agents 
are still needed.

Inhibitors of renal leukocyte recruitment: Membrane receptors 
on the surface of leukocytes have evolved as a therapeutic 
target to interrupt their renal recruitment [236]. A mirror-image 
(Spiegelmer) of MCP-1(CCL2), the pro-inflammatory chemokine 
capable for renal leukocytes recruitment in DN [237], was in 
vitro built-up using non-natural nucleotides. This spiegelmer is 
called Emapticap Pegol. It is an oligonucleotide that binds and 
neutralizes MCP-1[238]. In the study of safety and efficacy of 
Emapticap Pegol in stage 4 DN, statistically significant reduction 
in UAE showed up after 12 wk of Emapticap Pegol use as 3 times 
weekly subcutaneous injections[239]. Oral CCX140-B is another 
CCR2 antagonist that was tried in T2DM DN patients. In a dose 
of 5 mg/d on top of the standard of care treatment, CCX140-B 
caused a significant reduction of UAE and the rate of GFR decline. 
The significant impact on GFR was not supported in phase 3 study 
of CCX140-B [240]. 

A third agent capable of inhibition of renal interstitial leucocyte 
recruitment by suppressing JAK/STAT signaling was tried in 
diabetic rats at either early or advanced stages of diabetes. This 
cell-permeable peptide mimicking the kinase-inhibitory region 
of suppressor of cytokine signaling-1 (SOCS1) regulatory protein 
was found to reduce serum creatinine level, UAE, and renal 
histologic changes in all treated rats [241].

Exogenous klotho: This anti-senescence protein favors epithelial 
regeneration and inhibits fibroblast phenotype transformation 
during EMT [242]. Exogenous klotho was capable of attenuation 
of TGF-β bioactivity, type II TGF-β receptor protein expression, 
TGF- β Smad 2/3 signaling, and fibronectin expression in high 
glucose cultured renal interstitial fibroblasts [243]. Intravenous 
klotho gene administration was able to prevent the progression 
of renal hypertrophy and fibrosis in diabetic rats [244].

IL-17: Plasma and urine IL-17A levels are reduced in patients 
with advanced DN. T1DM mice genetically deficient in IL-17A 
developed more severe nephropathy. Treatment of T1DM and 
T2DM mice with low doses of IL-17A reversed the pathologic 
stigmata of DN in these mice. Low doses of IL-17A significantly 
decreased kidney size, mesangial matrix expansion, interstitial 
fibrosis, UAE, urine MCP1, IP10, TNF α, IL-6, and serum urea level 
in comparison to control animals [245].

Aldose reductase inhibitors: The potential role of aldose 
reductase inhibitors in the treatment and management of the 

major complications of diabetes like cataract, retinopathy, 
neuropathy, and cardiovascular disease has achieved appreciable 
advances. However, their use in DN is still unsatisfactory [246].

Protein kinase C inhibitors: One-year treatment of T2DM 
patients using ruboxistaurin mesylate significantly reduced UAE 
and maintained eGFR [247]. On the other hand, a more recent 
trial failed to disclose a significant value of ruboxistaurin on urine 
TGF-β or UAE [248]. This discrepancy will postpone the use of this 
agent till further trials can settle this controversy.

Sulodexide: Sulodexide, a purified mixture of sulfated 
glycosaminoglycan polysaccharides, was assessed in 2 clinical 
studies looking for its potential antiproteinuric effect. In early DN 
patients with T1DM and T2DM, sulodexide was associated with 
significant reduction of UAE [249]. In the second trial, reduction 
of UAE was not statistically significant in T2DM patients [250]. A 
more recent multicenter double-blind placebo-controlled study 
failed to demonstrate a significant decrease of UAE in T2DM with 
incipient nephropathy after use of sulodexide [251]. 

Endothelin receptor antagonists: The use of endothelin receptor 
antagonists is associated with serious adverse events in spite of 
their favorable effect on UAE in DN patients. A meta-analysis of 
five randomized controlled trials has confirmed this impression 
[252]. The SONAR is an ongoing hard outcome trial in T2DM 
patients with DN to evaluate atrasentan. Results of this trial will 
hopefully settle the possible role of this agent [253].

Intensified Multifactorial Intervention
STENO-2 is an open parallel trial that randomly allocated 
T2DM patients with incipient nephropathy to either standard 
treatment (n=80) or intensive treatment (n=80). Patient 
recruitment occurred during 1992-1993. The intensive treatment 
group had optimized diet regimen, 30 min exercise program 
3-5 times/wk, avoided smoking, got vitamin C, vitamin E, and 
oral hypoglycemic treatment if diet alone failed to keep HbA1c 
<6.5%, had statin treatment for hypercholesterolemic and fibrate 
treatment for hypertriglyceridemic patients. For overweight, 
oral hypoglycemic agents were metformin and for lean patients, 
gliclazide was used. If HbA1c did not reach the target with a 
single agent, a combination of both agents was prescribed. If 
oral treatment failed to achieve the target, insulin was added. 
Seventy-one patients in the intensive treatment group received 
antihypertensive treatment versus only 48 in the standard group 
thanks to lower BP target in the intensive treatment group. Out 
of these sixty-nine had ACE inhibitor in the intensive treatment 
versus thirty-eight in the standard treatment. After 7.8 years, all 
the patients were subsequently offered intensified multifactorial 
treatment according to the original protocol due to the marked 
risk reductions encountered with intensive treatment. In spite of 
the significant impact on survival and cardiovascular outcome, 
there was no significant difference in the incidence of ESRD 
between the 2 groups after a median observation time of 21.2 
years [103,254].

Perspectives
In spite of the disappointing finding of the STENO-2 study, 
the recent developments in the field of management of DN 
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give a big hope of better prevention and management of this 
progressive distressing disease. These new discoveries mandate 
the change of management plan. Control of blood sugar to the 
target often fails. The use of RAS blockers offers, at the best, 
partial protection. These agents were advised when diabetic 
patients proceed to stage 4 DN. RAS blockers failed to completely 
reverse the hemodynamic change encountered since the very 
early days of diabetes mellitus even with dual blockade of the 
RAS system. The early introduction of SGLT2 inhibitors to T1DM 
and T2DM offers a new addition to hyperfiltration control. The 
co-administration of RAS blocker and SGLT2 inhibitor deserves 
a long-term prospective trial in both types of diabetic patients 
with the use of both agents starting in the very early days of 
stage 1 of DN. This co-administration would avoid RAS system 
activation triggered by SGLT2 inhibitors. The anti-fibrotic effect 
of the DPP-4 inhibitors linagliptin and saxagliptin deserves their 
use as the favorable hypoglycemic agents in patients with DN. 
Diabetic patients in early stages of DN expectedly would get a 
maximal benefit after the triple treatment with RAS blocker, 

SGLT2 inhibitor, and either saxagliptin or linagliptin. In spite of 
the favorable impact of pioglitazone, its salt and water retaining 
effect limits its use in DN. With CKD progression to stage 4, 
Metformin and GLP-1 agonists should be avoided. However, 
their use in the earlier stages adds to the favorable effect of other 
agents. Once the DN patient has overt proteinuria, pentoxifylline 
should be added to the prescribed treatment. Although the 
chance of hyperuricemia is expectedly lower in patients already 
kept on SGLT2 inhibitor, serum uric acid should be monitored 
and hypouricemic treatment must be added if serum UA is above 
6.5 mg/dL. A strong evidence of safety and efficacy of the long-
term use of Nrf2 agonists, leucocyte recruitment inhibitors, IL17 
and klotho is still needed before allowing them to the approved 
list. Control of hyperphosphatemia and correction of metabolic 
acidosis are necessary once the patient proceeds to stage 4 CKD. 
Finally, we should emphasize that metformin, pioglitazone, DPP-
4 inhibitors, and SGLT2 inhibitors can be used in T1DM. Their use 
might decrease the chance of development and progression of DN.
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